EL MODELO DE REGRESIÓN LINEAL CLÁSICO EN R: UN ANÁLISIS TEÓRICO Y APLICADO A LA BIOESTADÍSTICA Y LA ECONOMÍA POLÍTICA

ISADORE NABI

CONTENIDO GENERAL

A. BIOESTADÍSTICA

A.1. Caso de aplicación

Se realizó un estudio para analizar la velocidad de nado de las personas mayores de 18 años que son miembros regulares de un equipo de natación, y se tomaron en cuenta algunas variables que pueden estar relacionadas con esta velocidad. Se hizo una prueba a los participantes y se tomó el tiempo que duraban en nadar 50m. Entonces como medida de la velocidad de nado se tiene el tiempo (en segundos) el cual se puede transformar a la velocidad dividiendo la distancia entre el tiempo. Esta variable se llama veloc. Como variables predictoras se tienen las siguientes:

  • edad: la edad en años cumplidos.
  • sexo: el sexo codificado como 0 (mujeres) y 1 (hombres).
  • imc: el índice de masa corporal se calcula dividiendo el peso en kilogramos entre la altura al cuadrado (en metros), lo cual da una medida en $kg/m^2$.
  • pierna: la longitud promedio de ambas piernas (en centímetros).
  • brazo: la longitud promedio de ambos brazos (en centímetros).

A.2. MÉTODOS Y TÉCNICAS ESTADÍSTICAS ESTUDIADAS Y APLICADAS

  • Análisis descriptivo con la sintaxis xyplot de la librería «lattice».
  • Análisis descriptivo con la sintaxis scatterplot de la librería «car».
  • Correlación lineal de Pearson.
  • Correlograma.
  • Estimación del valor esperado de la variable de respuesta.
  • Coeficientes de regresión estandarizados internamente y externamente.
  • Construccción manual y automatizada del modelo de regresión.
  • Construcción y descomposición manual de la suma de cuadrados.
  • Construcción manual y automatizada de intervalos de confianza t de Student.
  • Construcción manual y automatizada de los intervalos de predicción t de Student.
  • Construcción automatizada de los intervalos de tolerancia bayesianos normalmente distribuidos.
  • Ajuste de distribución de probabilidad.
  • Gráfico Q-Q.
  • Gráfico de probabilidad acumulada.
  • Gráfico P-P.
  • Pruebas de normalidad.
  • Simulación de estimación pseudo-aleatoria mediante una sintaxis de tipo bucle.
  • Efectos marginales.
  • Construcción manual de la prueba F.
  • Prueba de hipótesis de significancia global y local de los coeficientes de regresión.

b. ECONOMÍA POLÍTICA

B.1. cASO DE APLICACIÓN

Estudiar estadísticamente, como parte de un ejercicio pedagógico, los determinantes fundamentales lineales de la tasa media de ganancia para el caso de Estados Unidos en el período 1964-2008 mediante un análisis de regresión lineal.

B.2. MÉTODOS Y TÉCNICAS ESTADÍSTICAS ESTUDIADAS Y APLICADAS

  • Análisis descriptivo de tendencias con las sintaxis plot_ly y add_trace.
  • Análisis descriptivo de las influencias o ‘leverages’.
  • Construcción automatizada del modelo de regresión.
  • Verificación del modelo de mejor ajuste vía eliminación hacia atrás mediante el Criterio Bayesiano de Información (BIC).
  • Análisis de la capacidad predictiva del modelo.
  • Ajuste de distribución.
  • Contrastes de normalidad.
  • Distancia de Cook.
  • Pruebas de multicolinealidad.
  • Pruebas de autocorrelación.
  • Pruebas de heterocedasticidad.
  • Errores Estándar Robustos en presencia de Heterocedasticidad y Autocorrelación (Errores Estándar HAC).
  • Pruebas de especificación del modelo.
  • Construcción automatizada de intervalos de confianza t de Student.

UNA APROXIMACIÓN TEÓRICA A LA DETERMINACIÓN DE LA IGUALDAD DE VARIANZAS DE DOS POBLACIONES

ISADORE NABI

Si las medias r-ésimas (los r-ésimos estadísticos de prueba) son únicas y existe convergencia en distribución entre las muestras en comparación distribución, estas tendrán también las mismas medias r-ésimas. Para garantizar la unicidad de los momentos debe garantizarse que la muestra y la población sean finitas o, a lo sumo, infinitas numerables (que sea posible poderla poner en correspondencia uno-a-uno con los números naturales); mientras que para garantizar que converjan en distribución debe garantizarse (aunque no es el único camino, más sí el óptimo para estos fines) antes la convergencia en media r-ésima, que para el caso de los espacios euclidianos y sus generalizaciones naturales (los espacios de Hilbert) debe ser convergencia en media cuadrática (porque la norma de tales espacios es de carácter cuadrático y sirve para estimar distancias bajo una lógica también cuadrática). Adicionalmente, en términos matemáticos, que converjan en media cuadrática garantiza que converjan en varianza. Que converjan en media cuadrática se verifica, en el contexto de los espacios ya mencionados, cuando se certifica a través de una prueba de hipótesis rigurosa que las medias de las dos poblaciones no difieren en términos estadísticamente significativos. Si el conjunto de condiciones anteriormente expuesto se cumple, entonces que dos muestras tengan la misma distribución y la misma media implica que su varianza será igual, lo que formalmente hablando implica que sus varianzas tenderán a ser iguales a medida se aproximen al tamaño de la población de la cual son parte. Debido a que una distribución no es caracterizada unívocamente por sus momentos sino por su función característica (si todos sus momentos son finitos), la cual es la solución a la ecuación integral generada tras la aplicación de la transformación de Fourier a la distribución de probabilidad en cuestión, la unicidad de los momentos implica formalmente hablando, además de la restricción antes impuesta sobre el tamaño de la muestra y la población, que las distribuciones de probabilidad tengan la misma función característica. Los parámetros de transformación de Fourier son, por definición, los mismos para todos los casos (a=1, b=1). El hecho de que las poblaciones sean o no sean homogéneas no es explícitamente relevante en términos teóricos puesto que la matemática pura no establece teoremas contemplando aspectos esenciales de los fenómenos que modela de manera abstracta-formal (garantiza que la heterogeneidad no sea un problema -en el terreno asintótico- al establecer los pre-requisitos antes mencionados, como se verá en el contexto aplicado). En términos aplicados es, sin lugar a dudas, completamente relevante porque puede tener implicaciones en que la diferencia en variabilidad de las muestras sea estadísticamente significativa; sin embargo, lo que se desprende en términos prácticos de lo expuesto teóricamente antes es que si dos muestras tienen la misma forma geométrica general (la misma distribución, que implica que los conjuntos de datos siguen el mismo patrón geométrico), más allá de variaciones de escala (producto de variaciones no significativas en los parámetros, es decir, variaciones que no cambian el tipo específico de distribución de la que se trate) y además existe convergencia en media (que es una forma rigurosa de expresar que, aproximadamente hablando, tendrán la misma media), también existirá convergencia en varianza, es decir, que las varianzas, diferirán a lo sumo, en una constante arbitraria C*, que se expresa teóricamente como el residuo de la solución a la ecuación integral antes mencionada. Por lo anterior, no es necesario realizar una prueba de potencia para la igualdad de varianzas establecida con prueba F, simplemente basta con verificar que las poblaciones sean las mismas, tengan el mismo tamaño de muestra y tengan la misma media para saber que tendrán la misma varianza o segundo momento.

ASPECTOS TEÓRICOS GENERALES SOBRE LA MATRIZ DE DISEÑO ESTRUCTURAL

ISADORE NABI

Como se señala en (Eppinger & Browning, 2012, págs. 2-4), la matriz de diseño estructural (DSM de ahora en adelante, por sus siglas en inglés) es una herramienta de modelado de redes que se utiliza para representar los elementos que componen un sistema y sus interacciones, destacando así la arquitectura del sistema (o estructura diseñada). DSM se adapta particularmente bien a aplicaciones en el desarrollo de sistemas de ingeniería complejos y, hasta la fecha, se ha utilizado principalmente en el área de gestión de ingeniería. Sin embargo, en el horizonte hay una gama mucho más amplia de aplicaciones de DSM que abordan problemas complejos en la gestión de la atención médica, los sistemas financieros, las políticas públicas, las ciencias naturales y los sistemas sociales. El DSM se representa como una matriz cuadrada N x N, que mapea las interacciones entre el conjunto de N elementos del sistema. DSM, una herramienta muy flexible, se ha utilizado para modelar muchos tipos de sistemas. Dependiendo del tipo de sistema que se modele, DSM puede representar varios tipos de arquitecturas. Por ejemplo, para modelar la arquitectura de un producto, los elementos de DSM serían los componentes del producto y las interacciones serían las interfaces entre los componentes (figura 1.1.a).

Fuente: (Eppinger & Browning, 2012, pág. 1).

Para modelar la arquitectura de una organización, los elementos de DSM serían las personas o equipos de la organización, y las interacciones podrían ser comunicaciones entre las personas (figura l.1.b). Para modelar una arquitectura de proceso, los elementos del DSM serían las actividades en el proceso, y las interacciones serían los flujos de información y/o materiales entre ellos (figura l.l.c). Los modelos DSM de diferentes tipos de arquitecturas pueden incluso combinarse para representar cómo se relacionan los diferentes dominios del sistema dentro de un sistema más grande (figura l.l.d). Por tanto, el DSM es una herramienta genérica para modelar cualquier tipo de arquitectura de sistema. En comparación con otros métodos de modelado de redes, el principal beneficio de DSM es la naturaleza gráfica del formato de visualización de la matriz. La matriz proporciona una representación muy compacta, fácilmente escalable y legible de forma intuitiva de la arquitectura de un sistema. La figura l.3.a muestra un modelo DSM simple de un sistema con ocho elementos, junto con su representación gráfica dirigida equivalente (dígrafo) en la figura 1.3.b.

Fuente: (Eppinger & Browning, 2012, pág. 4).

En comparación con otros métodos de modelado de redes, el principal beneficio de DSM es la naturaleza gráfica del formato de visualización de la matriz. La matriz proporciona una representación muy compacta, fácilmente escalable y legible de forma intuitiva de la arquitectura de un sistema. La figura l.3.a muestra un modelo DSM simple de un sistema con ocho elementos, junto con su representación equivalente como grafo dirigido (dígrafo) en la figura 1.3.b. En los estudios iniciales de DSM, a muchos les resulta fácil pensar que las celdas a lo largo de la diagonal de la matriz representan los elementos del sistema, análogos a los nodos en el modelo de dígrafo; sin embargo, es necesario mencionar que, para mantener el diagrama de matriz compacto, los nombres completos de los elementos a menudo se enumeran a la izquierda de las filas (y a veces también encima de las columnas) en lugar de en las celdas diagonales. También es fácil pensar que cada celda sobre la diagonal principal de la matriz puede tener entradas que ingresan desde sus lados izquierdo y derecho y salidas que salen desde arriba y abajo. Las fuentes y destinos de estas interacciones de entrada y salida se identifican mediante marcas en las celdas fuera de la diagonal (en la figura anterior expresadas con una letra X) análogas a los arcos direccionales en el modelo de dígrafo. Examinar cualquier fila de la matriz revela todas las entradas del elemento en esa fila (que son salidas de otros elementos).

Si se observa hacia abajo, cualquier columna de la matriz muestra todas las salidas del elemento en esa columna (que se convierten en entradas para otros elementos). En el ejemplo simple de DSM que se muestra en la figura 1.3.a, los ocho elementos del sistema están etiquetados de la A a la H, y hemos etiquetado tanto las filas como las columnas de la A a la H en consecuencia. Al leer la fila D, por ejemplo, vemos que el elemento D tiene entradas de los elementos A, B y F, representados por las marcas X en la fila D, columnas A, B y F. Al leer la columna F, vemos ese elemento F tiene salidas que van a los elementos B y D. Por lo tanto, la marca en la celda fuera de la diagonal [D, F] representa una interacción que es tanto una entrada como una salida dependiendo de si se toma la perspectiva de su proveedor (columna F) o su receptor (fila D). Es importante notar que muchos recursos de DSM usan la convención opuesta, la transposición de la matriz, con las entradas de un elemento mostradas en su columna y sus salidas mostradas en su fila. Las dos convenciones transmiten la misma información, y ambas se utilizan ampliamente debido a las diversas raíces de las herramientas basadas en matrices para los sistemas de modelado.

En este sentido, como se verifica en (IBM, 2021), en diversos escenarios aplicados puede existir más de una función discriminante[1], como se muestra a continuación.

Fuente: (IBM, 2021).

En general, como se verifica en (Zhao & Maclean, 2000, pág. 841), el análisis discriminante canónico (CDA, por nombre en inglés) es una técnica multivariante que se puede utilizar para determinar las relaciones entre una variable categórica y un grupo de variables independientes. Uno de los propósitos principales de CDA es separar clases (poblaciones) en un espacio discriminante de menor dimensión. En este contexto es que cuando existe más de una función discriminante (cada una de estas puede verse como un modelo de regresión lineal), un asterisco (*) como en este caso (para el caso del programa SaaS) u otro símbolo denotará la mayor correlación absoluta de cada variable con una de las funciones canónicas. Dentro de cada función, estas variables marcadas se ordenan por el tamaño de la correlación. Para el caso de la tabla presentada en la figura anterior, su lectura debe realizarse de la siguiente manera:

  1. “Nivel educativo” está más fuertemente correlacionado con la primera función y es la única variable más fuertemente correlacionada con esta función.
  2. Años con empresa actual, “Edad” en años, “Ingresos del hogar” en miles, “Años” en la dirección actual, “Retirado” y “Sexo” están más fuertemente correlacionados con la segunda función, aunque “Sexo” y “Jubilación” están más débilmente correlacionados que los otros. Las demás variables marcan esta función como función de «estabilidad».
  3. “Número de personas en el hogar” y “Estado civil” están más fuertemente correlacionados con la tercera función discriminante, pero esta es una función sin utilidad, así que estos predictores son prácticamente inútiles.

REFERENCIAS

de la Fuente Fernández, S. (s.f.). Análisis Discriminante. Obtenido de Universidad Autónoma de Madrid: https://www.estadistica.net/Master-Econometria/Analisis_Discriminante.pdf

Eppinger, S. D., & Browning, T. R. (2012). Design Structure Matrix Methods and Applications. Cambridge, Massachusetts: MIT Press.

IBM. (2021). Análisis discriminante. Obtenido de SPSS Statistics: https://www.ibm.com/docs/es/spss-statistics/version-missing?topic=features-discriminant-analysis

IBM. (2021). Matriz de estructura. Obtenido de SaaS: https://www.ibm.com/docs/es/spss-modeler/SaaS?topic=customers-structure-matrix

Wikipedia. (23 de Junio de 2021). Linear classifier. Obtenido de Statistical classification: https://en.wikipedia.org/wiki/Linear_classifier

Zhao, G., & Maclean, A. L. (2000). A Comparison of Canonical Discriminant Analysis and Principal Component Analysis for Spectral Transformation. Photogrammetric Engineering & Remote Sensing, 841-847. Obtenido de https://www.asprs.org/wp-content/uploads/pers/2000journal/july/2000_jul_841-847.pdf

[1] Como se verifica en (de la Fuente Fernández, pág. 1), un discriminante es cada una de las variables independientes con las que se cuenta. Además, como se verifica en (IBM, 2021), una función discriminante es aquella que, mediante las diferentes combinaciones lineales de las variables predictoras, busca realizar la mejor discriminación posible entre los grupos. No debe olvidarse que, como se señala en (Wikipedia, 2021), En el campo del aprendizaje automático, el objetivo de la clasificación estadística es utilizar las características de un objeto para identificar a qué clase (o grupo) pertenece.

SOBRE LA INICIATIVA INTERNACIONAL DE PROMOCIÓN DE POLÍTICA ECONÓMICA (IIPE 2021), EL IMPERIALISMO, CHINA Y LAS FINANZAS INTERNACIONALES

BREVE INTRODUCCIÓN

Este día se publicó una investigación en el sitio web de Michael Roberts que versa, en general, sobre el papel del desarrollo tecnológico en el comercio internacional como mecanismo de acumulación de capital característico de la economía capitalista planetaria en su fase imperialista. Sobre dicha investigación se elabora la presente publicación, la cual está compuesta por tres secciones. En la primera sección se realiza un breve abordaje histórico sobre aspectos teóricos de interés abordados por Roberts en su publicación de naturaleza fundamentalmente empírica. En la segunda sección se presenta la traducción de la publicación de Roberts. Finalmente, en la tercera sección se facilita la descarga de las referencias bibliográficas presentadas por Roberts en su publicación.

I. ASPECTOS TEÓRICOS preliminares

Es importante decir que la teoría sobre el capitalismo en su fase imperialista hunde sus raíces empíricas más importantes el trabajo de Vladimir Lenin (1916) y sus raíces teóricas más importantes en el trabajo de Arghiri Emmanuel (1962). Por supuesto, el trabajo de Lenin no se limitó a ser empírico, pero fue en esta dirección la centralización de sus esfuerzos y ello conforma un punto de partida razonable para un breve análisis sobre cómo (y por qué) han evolucionado las teorías marxistas sobre el imperialismo.

Lenin fue el primer teórico del marxismo que estudió la acumulación de capital a escala planetaria considerando las relaciones centro-perisferia como una generalización económica, política, social y cultural de la lucha de clases nacional; sobre ello no existe debate relevante en el seno de la comunidad marxista. La armonía no es tal cuando se trata de abordar la obra de Arghiri Emmanuel. Cualquier persona lo suficientemente estudiosa de la historia de las ciencias sabrá que, sobre todo en ciencias sociales (con especial énfasis en economía política), la aceptación de una teoría no tiene que ver con motivos puramente académicos sino también políticos. La teoría de economía política internacional (de ahora en adelante economía geopolítica) de Emmanuel tuvo poca aceptación entre la comunidad marxista fundamentalmente no por su polémico uso de la ley del valor en el concierto internacional, sino por las conclusiones políticas que su teoría generaba. La idea central de Emmanuel es que en el concierto interncional ocurre una transformación global de valores a precios de producción como la que ocurre (salvo las particularidades naturales características del incremento en complejidad del sistema) a escala local o nacional. Es esa y no otra la idea fundamental del trabajo de Emmanuel, con independencia del grado de acuerdo (o desacuerdo) que se tenga sobre la forma en que realiza tal planteamiento. La lógica que condujo a Emmanuel a la construcción de esta idea parecería ser la misma que la que condujo a construir en la teoría matemática del caos el concepto de autosimilaridad. Esta esta lógica se puede generalizar dialécticamente como se plantea a continuación.

Los componentes (modelados mediante ecuaciones) de una totalidad (modelada mediante un sistema de ecuaciones) comparten una esencia común (i.e., que son isomórficos entre sí) que permite su combinación integrodiferencial de forma armónica y coherente bajo una determinada estructura interna de naturaleza material (objetiva), no-lineal (la totalidad es diferente a la suma de sus partes) y dinámica (el tiempo transcurre) generada por la interacción de tales componentes dadas determinadas condiciones iniciales. La estructura interna del sistema (o totalidad de referencia) condiciona a los componentes que la generan bajo el mismo conjunto de leyes (pero generalizado, por lo que no es formalmente el mismo) que rigen la interacción entre las condiciones iniciales y las relaciones primigenias entre componentes que determinaron la gestación de dicha estructura interna. Estas leyes son: 1. Unidad y Lucha de los Contrarios (que implica emergencia y al menos autoorganización crítica), 2. Salto de lo Cuantitativo a lo Cualitativo (bifurcación), 3. Ley de la Negación de la Negación (que es una forma generalizada de la síntesis química).

AUTOSIMILARIDAD

Antes de proceder a exponer las fuentes formales y fácticas de la poca popularidad de las teorías de Emmanuel, es necesario decir un par de cuestiones relativas al papel que desempeña el tiempo en el sistema marxiano. Las escuelas de pensamiento económico marxista se pueden clasificar según su abordaje matemático del proceso histórico de transformación de valores en precios de producción; sin embargo, aún dentro de las mismas escuelas existen divergencias teóricas importantes, fundamentalmente en relación a la MELT (Monetary Expression of Labor Time) o algún equivalente de esta. Así, las escuelas de pensamiento económico marxista son la escuela temporalista, la escuela simultaneísta y alguna combinación o punto intermedio entre ellas. Todas estas diferencias filosóficas, en contraste con lo que ocurre en Filosofía de la Estadística entre, por ejemplo, frecuentistas y bayesianos subjetivos, no solo no requieren de mucha investigación para ser verificadas empíricamente, sino que además tienen como consecuencia la gestación de sistemas matemáticos que hasta la fecha (la realidad es cambiante, indudablemente) han resultado antagónicos teóricamente respecto de ese punto (en el de transformar valores en precios de producción) y numéricamente diferentes de forma sustancial en sus predicciones (aunque cualitativamente es usual que sus diferencias no sean esenciales, salvo en el punto expuesto -que es evidentemente un aspecto medular de la teoría de Marx-).

La polémica sobre el uso de la ley del valor de Emmanuel tuvo que ver con el manejo de los supuestos que realizó y, con ello, con los escenarios teóricos que identificaba con la realidad. Esta polémica se agudizó luego de que, tras las críticas recibidas (cuyo trasfondo era teórico solo formalmente o minoritariamente en su defecto), Emmanuel publicara un sistema de ecuaciones simultáneas (con ello se ganó el rechazo de los marxistas más conservadores de la época -los cuales eran reacios al uso de las matemáticas-, que no eran minoría) para abordar la transformación de valores en precios de producción) poco ortodoxo para el oficialismo de lo que se podría denominar como «marxismo matemático», lo que en términos netos le valió para la época (1962) incompatibilidad intelectual con la generalidad de los académicos.

El debate teórico real no es, evidentemente, si el tiempo existe o no, sino si es lo suficientemente relevante para configurar el sistema matemático alrededor del mismo o si no lo es y, por consiguiente, no existen consecuencias relevantes (tanto teóricas como numéricas) por descartarlo del modelo formal del sistema capitalista. Emmanuel define en su obra el valor como cantidad cronométrica de trabajo socialmente necesario (que es la misma definición del marxismo clásico, sólo que comprimida), sin embargo, su modelo de transformación de valores en precios de producción hace uso de las ecuaciones simultáneas (lo heterodoxo del asunto radica en que establece ex ante al trabajo como la variable fundamental del sistema, para que las ecuaciones y las incógnitas se igualen automáticamente y afirmar con ello que se implica la anterioridad histórica de la fuerza de trabajo, puesto que lo precede teóricamente), aunque tampoco por ello tenga problema en afirmar que existen «dos esencias» (el capital y el trabajo) o, en otros términos, que no sólo el trabajo crea valor. ¿Cuál fue entonces el trasfondo político?

A pesar de que en tiempos modernos pueda resultar un poco difícil de pensar, alrededor de 1962 existía un relativamente pujante movimiento obrero internacional y políticamente su unidad era cardinal en la lucha contra la explotación planeataria y el modelo de Emmanuel, guste o no, implica que el bienestar de los trabajadores de los países industrializados es sufragado indirectamente por las condiciones de miseria extrema que se viven en los países de la periferia. Por supuesto, ello se implica también a nivel local, ¿quiénes permiten que los trabajadores de las ramas productivas más intensivas en capital obtengan salarios muy por encima del promedio salarial nacional sino los trabajadores de las ramas productivas intensivas en trabajo?, en un sistema de economía política los agentes económicos guardan entre sí relaciones de suma cero, es decir, la ganancia de unos implica la pérdida de otros, aunque esto no siempre ocurre (y mucho menos se observa) de forma inmediata; este hecho fundamental no cambia en un sistema de economía geopolítica. Sin embargo, aunque la topología en ambos sistemas es fundamentalmente la misma las métricas cambian y las grandes brechas sociales observadas internacionalmente (por ejemplo, entre Noruega y Haití) no se observan en términos generales (promedio) a nivel local, lo que hace más notoria la explotación, aunque no más real. Complementariamente, debe resaltarse el hecho de que, dentro de sus propias condiciones materiales de existencia, los trabajadores de los países industrializados tienen sus propias luchas sociales.

Mi máximo cariño, aprecio y admiración a toda la comunidad marxista de aquella época, puesto que al fin y al cabo lucha de clases fáctica es nuestra misión última y todos somos producto de nuestras condiciones históricas, es decir, aunque hacemos la historia, no hacemos las condiciones bajo las cuales hacemos nuestra historia.

II. IIPPE 2021: imperialism, China and finance – michael roberts

La conferencia 2021 de la Iniciativa Internacional para la Promoción de la Economía Política (IIPPE) tuvo lugar hace un par de semanas, pero solo ahora he tenido tiempo de revisar los numerosos trabajos presentados sobre una variedad de temas relacionados con la economía política. El IIPPE se ha convertido en el canal principal para que economistas marxistas y heterodoxos ‘presenten sus teorías y estudios en presentaciones. Las conferencias de materialismo histórico (HM) también hacen esto, pero los eventos de HM cubren una gama mucho más amplia de temas para los marxistas. Las sesiones de Union for Radical Political Economy en la conferencia anual de la American Economics Association se concentran en las contribuciones marxistas y heterodoxas de la economía, pero IIPPE involucra a muchos más economistas radicales de todo el mundo.

Ese fue especialmente el caso de este año porque la conferencia fue virtual en zoom y no física (¿tal vez el próximo año?). Pero todavía había muchos documentos sobre una variedad de temas guiados por varios grupos de trabajo del IIPPE. Los temas incluyeron teoría monetaria, imperialismo, China, reproducción social, financiarización, trabajo, planificación bajo el socialismo, etc. Obviamente no es posible cubrir todas las sesiones o temas; así que en esta publicación solo me referiré a las que asistí o en las que participé.

El primer tema para mí fue la naturaleza del imperialismo moderno con sesiones que fueron organizadas por el grupo de trabajo de Economía Mundial. Presenté un artículo, titulado La economía del imperialismo moderno, escrito conjuntamente por Guglielmo Carchedi y yo. En la presentación argumentamos, con evidencia, que los países imperialistas pueden definirse económicamente como aquellos que sistemáticamente obtienen ganancias netas, intereses y rentas (plusvalía) del resto del mundo a través del comercio y la inversión. Estos países son pequeños en número y población (solo 13 o más califican según nuestra definición).

Demostramos en nuestra presentación que este bloque imperialista (IC en el gráfico a continuación) obtiene algo así como 1,5% del PIB cada año del ‘intercambio desigual’ en el comercio con los países dominados (DC en el gráfico) y otro 1,5% del PIB de intereses, repatriación de utilidades y rentas de sus inversiones de capital en el exterior. Como estas economías están creciendo actualmente a no más del 2-3% anual, esta transferencia es un apoyo considerable al capital en las economías imperialistas.

https://thenextrecession.files.wordpress.com/2021/09/ii1.png

Los países imperialistas son los mismos «sospechosos habituales» que Lenin identificó en su famosa obra hace unos 100 años. Ninguna de las llamadas grandes «economías emergentes» está obteniendo ganancias netas en el comercio o las inversiones – de hecho, son perdedores netos para el bloque imperialista – y eso incluye a China. De hecho, el bloque imperialista extrae más plusvalía de China que de muchas otras economías periféricas. La razón es que China es una gran nación comercial; y también tecnológicamente atrasado en comparación con el bloque imperialista. Entonces, dados los precios del mercado internacional, pierde parte de la plusvalía creada por sus trabajadores a través del comercio hacia las economías más avanzadas. Esta es la explicación marxista clásica del «intercambio desigual» (UE).

Pero en esta sesión, esta explicación de los logros imperialistas fue discutida. John Smith ha producido algunos relatos convincentes y devastadores de la explotación del Sur Global por parte del bloque imperialista. En su opinión, la explotación imperialista no se debe a un «intercambio desigual» en los mercados entre las economías tecnológicamente avanzadas (imperialismo) y las menos avanzadas (la periferia), sino a la «superexplotación». Los salarios de los trabajadores del Sur Global han bajado incluso de los niveles básicos de reproducción y esto permite a las empresas imperialistas extraer enormes niveles de plusvalía a través de la «cadena de valor» del comercio y los márgenes intraempresariales a nivel mundial. Smith argumentó en esta sesión que tratar de medir las transferencias de plusvalía del comercio utilizando estadísticas oficiales como el PIB de cada país era una ‘economía vulgar’ que Marx habría rechazado porque el PIB es una medida distorsionada que deja fuera una parte importante de la explotación de la economía global. Sur.

Nuestra opinión es que, incluso si el PIB no captura toda la explotación del Sur Global, nuestra medida de intercambio desigual todavía muestra una enorme transferencia de valor de las economías periféricas dependientes al núcleo imperialista. Además, nuestros datos y medidas no niegan que gran parte de esta extracción de plusvalía proviene de una mayor explotación y salarios más bajos en el Sur Global. Pero decimos que esta es una reacción de los capitalistas del Sur a su incapacidad para competir con el Norte tecnológicamente superior. Y recuerde que son principalmente los capitalistas del Sur los que están haciendo la «súper explotación», no los capitalistas del Norte. Estos últimos obtienen una parte a través del comercio de cualquier plusvalía extra de las mayores tasas de explotación en el Sur.

De hecho, mostramos en nuestro artículo, las contribuciones relativas a la transferencia de plusvalía de tecnología superior (mayor composición orgánica del capital) y de explotación (tasa de plusvalía) en nuestras medidas. La contribución de la tecnología superior sigue siendo la principal fuente de intercambio desigual, pero la participación de diferentes tasas de plusvalía se ha elevado a casi la mitad.

https://thenextrecession.files.wordpress.com/2021/09/ii2.png

Andy Higginbottom en su presentación también rechazó la teoría marxista clásica del imperialismo del intercambio desigual presentada en el artículo Carchedi-Roberts, pero por diferentes motivos. Consideró que la igualación de las tasas de ganancia a través de las transferencias de plusvalías individuales a precios de producción se realizó de manera inadecuada en nuestro método (que seguía a Marx). Por lo tanto, nuestro método podría no ser correcto o incluso útil para empezar.

En resumen, nuestra evidencia muestra que el imperialismo es una característica inherente del capitalismo moderno. El sistema internacional del capitalismo refleja su sistema nacional (un sistema de explotación): explotación de las economías menos desarrolladas por las más desarrolladas. Los países imperialistas del siglo XX no han cambiado. No hay nuevas economías imperialistas. China no es imperialista en nuestras medidas. La transferencia de plusvalía por parte de la UE en el comercio internacional se debe principalmente a la superioridad tecnológica de las empresas del núcleo imperialista pero también a una mayor tasa de explotación en el «sur global». La transferencia de plusvalía del bloque dominado al núcleo imperialista está aumentando en términos de dólares y como porcentaje del PIB.

En nuestra presentación, revisamos otros métodos para medir el «intercambio desigual» en lugar de nuestro método de «precios de producción», y hay bastantes. En la conferencia, hubo otra sesión en la que Andrea Ricci actualizó (ver sección III) su invaluable trabajo sobre la medición de la transferencia de plusvalía entre la periferia y el bloque imperialista utilizando tablas mundiales de insumo-producto para los sectores comerciales y medidas en dólares PPA. Roberto Veneziani y sus colegas también presentaron un modelo de equilibrio general convencional para desarrollar un «índice de explotación» que muestra la transferencia neta de valor en el comercio de los países. Ambos estudios apoyaron los resultados de nuestro método más «temporal».

En el estudio de Ricci hay una transferencia neta anual del 4% de la plusvalía en el PIB per cápita a América del Norte; casi el 15% per cápita para Europa occidental y cerca del 6% para Japón y Asia oriental. Por otro lado, existe una pérdida neta de PIB anual per cápita para Rusia del 17%; China 10%, América Latina 5-10% y 23% para India.

https://thenextrecession.files.wordpress.com/2021/09/ii3.png

En el estudio de Veneziani et al, “todos los países de la OCDE están en el centro, con un índice de intensidad de explotación muy por debajo de 1 (es decir, menos explotado que explotador); mientras que casi todos los países africanos son explotados, incluidos los veinte más explotados «. El estudio coloca a China en la cúspide entre explotados y explotados.

https://thenextrecession.files.wordpress.com/2021/09/ii4.png

En todas estas medidas de explotación imperialista, China no encaja a la perfección, al menos económicamente. Y esa es la conclusión a la que también se llegó en otra sesión que lanzó un nuevo libro sobre imperialismo del economista marxista australiano Sam King. El convincente libro de Sam King propone que la tesis de Lenin era correcta en sus fundamentos, a saber, que el capitalismo se había convertido en lo que Lenin llamó «capital financiero monopolista» (si bien su libro no está disponible de forma gratuita, su tesis versa fundamentalmente sobre lo mismo). El mundo se ha polarizado en países ricos y pobres sin perspectivas de que ninguna de las principales sociedades pobres llegue a formar parte de la liga de los ricos. Cien años después, ningún país que fuera pobre en 1916 se ha unido al exclusivo club imperialista (salvo con la excepción de Corea y Taiwán, que se beneficiaron específicamente de las «bendiciones de la guerra fría del imperialismo estadounidense»).

La gran esperanza de la década de 1990, promovida por la economía del desarrollo dominante de que Brasil, Rusia, India, China y Sudáfrica (BRICS) pronto se unirían a la liga de los ricos en el siglo XXI, ha demostrado ser un espejismo. Estos países siguen siendo también rans y todavía están subordinados y explotados por el núcleo imperialista. No hay economías de rango medio, a medio camino, que puedan ser consideradas como «subimperialistas» como sostienen algunos economistas marxistas. King muestra que el imperialismo está vivo y no tan bien para los pueblos del mundo. Y la brecha entre las economías imperialistas y el resto no se está reduciendo, al contrario. Y eso incluye a China, que no se unirá al club imperialista.

Hablando de China, hubo varias sesiones sobre China organizadas por el grupo de trabajo IIPPE China. Las sesiones fueron grabadas y están disponibles para verlas en el canal de YouTube de IIPPE China. La sesión cubrió el sistema estatal de China; sus políticas de inversión extranjera; el papel y la forma de planificación en China y cómo China se enfrentó a la pandemia de COVID.

También hubo una sesión sobre ¿Es capitalista China?, en la que realicé una presentación titulada ¿Cuándo se volvió capitalista China? El título es un poco irónico, porque argumenté que desde la revolución de 1949 que expulsó a los terratenientes compradores y capitalistas (que huyeron a Formosa-Taiwán), China ya no ha sido capitalista. El modo de producción capitalista no domina en la economía china incluso después de las reformas de mercado de Deng en 1978. En mi opinión, China es una «economía de transición» como lo era la Unión Soviética, o lo son ahora Corea del Norte y Cuba.

En mi presentación defino qué es una economía de transición, como la vieron Marx y Engels. China no cumple con todos los criterios: en particular, no hay democracia obrera, no hay igualación o restricciones en los ingresos; y el gran sector capitalista no está disminuyendo constantemente. Pero, por otro lado, los capitalistas no controlan la maquinaria estatal, sino los funcionarios del Partido Comunista; la ley del valor (beneficio) y los mercados no dominan la inversión, sí lo hace el gran sector estatal; y ese sector (y el sector capitalista) tienen la obligación de cumplir con los objetivos de planificación nacional (a expensas de la rentabilidad, si es necesario).

Si China fuera simplemente otra economía capitalista, ¿cómo explicamos su fenomenal éxito en el crecimiento económico, sacando a 850 millones de chinos de la línea de pobreza ?; y evitar las recesiones económicas que las principales economías capitalistas han sufrido de forma regular? Si ha logrado esto con una población de 1.400 millones y, sin embargo, es capitalista, entonces sugiere que puede haber una nueva etapa en la expansión capitalista basada en alguna forma estatal de capitalismo que sea mucho más exitosa que los capitalismos anteriores y ciertamente más que sus pares en India, Brasil, Rusia, Indonesia o Sudáfrica. China sería entonces una refutación de la teoría marxista de la crisis y una justificación del capitalismo. Afortunadamente, podemos atribuir el éxito de China a su sector estatal dominante para la inversión y la planificación, no a la producción capitalista con fines de lucro y al mercado.

Para mí, China se encuentra en una «transición atrapada». No es capitalista (todavía) pero no avanza hacia el socialismo, donde el modo de producción es a través de la propiedad colectiva de los medios de producción para las necesidades sociales con consumo directo sin mercados, intercambio o dinero. China está atrapada porque todavía está atrasada tecnológicamente y está rodeada de economías imperialistas cada vez más hostiles; pero también está atrapado porque no existen organizaciones democráticas de trabajadores y los burócratas del PC deciden todo, a menudo con resultados desastrosos.

Por supuesto, esta visión de China es minoritaria. Los «expertos en China» occidentales están al unísono de que China es capitalista y una forma desagradable de capitalismo para arrancar, no como los capitalismos «democráticos liberales» del G7. Además, la mayoría de los marxistas están de acuerdo en que China es capitalista e incluso imperialista. En la sesión, Walter Daum argumentó que, incluso si la evidencia económica sugiere que China no es imperialista, políticamente China es imperialista, con sus políticas agresivas hacia los estados vecinos, sus relaciones comerciales y crediticias explotadoras con países pobres y su supresión de minorías étnicas como los uyghars en la provincia de Xinjiang. Otros presentadores, como Dic Lo y Cheng Enfu de China, no estuvieron de acuerdo con Daum, y Cheng caracterizó a China como «socialista con elementos del capitalismo de Estado», una formulación extraña que suena confusa.

Finalmente, debo mencionar algunas otras presentaciones. Primero, sobre la controvertida cuestión de la financiarización. Los partidarios de la ‘financiarización’ argumentan que el capitalismo ha cambiado en los últimos 50 años de una economía orientada a la producción a una dominada por el sector financiero y son las visiones de este sector inestable las que causan las crisis, no los problemas de rentabilidad en el sector productivo. sectores, como argumentó Marx. Esta teoría ha dominado el pensamiento de los economistas poskeynesianos y marxistas en las últimas décadas. Pero cada vez hay más pruebas de que la teoría no solo es incorrecta teóricamente, sino también empíricamente.

Y en IIPPE, Turan Subasat y Stavros Mavroudeas presentaron aún más evidencia empírica para cuestionar la «financiarización» en su artículo titulado: La hipótesis de la financiarización: una crítica teórica y empírica. Subasat y Mavroudeas encuentran que la afirmación de que la mayoría de las empresas multinacionales más grandes son «financieras» es incorrecta. De hecho, la participación de las finanzas en los EE. UU. Y el Reino Unido no ha aumentado en los últimos 50 años; y durante los últimos 30 años, la participación del sector financiero en el PIB disminuyó en un 51,2% y la participación del sector financiero en los servicios disminuyó en un 65,9% en los países estudiados. Y no hay evidencia de que la expansión del sector financiero sea un predictor significativo del declive de la industria manufacturera, que ha sido causado por otros factores (globalización y cambio técnico).

Y hubo algunos artículos que continuaron confirmando la teoría monetaria de Marx, a saber, que las tasas de interés no están determinadas por una « tasa de interés natural » de la oferta y la demanda de ahorros (como argumentan los austriacos) o por la preferencia de liquidez, es decir, el acaparamiento de dinero (como afirman los keynesianos), pero están limitados e impulsados ​​por los movimientos en la rentabilidad del capital y, por lo tanto, la demanda de fondos de inversión. Nikos Stravelakis ofreció un artículo, Una reconciliación de la teoría del interés de Marx y el rompecabezas de la prima de riesgo, que mostraba que las ganancias netas corporativas están relacionadas positivamente con los depósitos bancarios y las ganancias netas a brutas están relacionadas positivamente con la tasa de depósitos de préstamos y que el 60% de las variaciones en las tasas de interés pueden explicarse por cambios en la tasa de ganancia. Y Karl Beitel mostró la estrecha conexión entre el movimiento a largo plazo de la rentabilidad en las principales economías en los últimos 100 años (cayendo) y la tasa de interés de los bonos a largo plazo (cayendo). Esto sugiere que hay un nivel máximo de tasas de interés, como argumentó Marx, determinado por la tasa de ganancia sobre el capital productivo, porque el interés proviene solo de la plusvalía.

Finalmente, algo que no estaba en IIPPE pero que agrega aún más apoyo a la ley de Marx de la tendencia a la caída de la tasa de ganancia. En el libro World in Crisis, coeditado por Carchedi y yo, muchos economistas marxistas presentaron evidencia empírica de la caída de la tasa de ganancia del capital de muchos países diferentes. Ahora podemos agregar otro. En un nuevo artículo, El crecimiento económico y la tasa de ganancia en Colombia 1967-2019, Alberto Carlos Duque de Colombia muestra la misma historia que hemos encontrado en otros lugares. El artículo encuentra que el movimiento en la tasa de ganancia está “en concordancia con las predicciones de la teoría marxista y afecta positivamente la tasa de crecimiento. Y la tasa de crecimiento del PIB se ve afectada por la tasa de ganancia y la tasa de acumulación está en una relación inversa entre estas últimas variables ”.

Por lo tanto, los resultados “son consistentes con los modelos macroeconómicos marxistas revisados en este artículo y brindan apoyo empírico a los mismos. En esos modelos, la tasa de crecimiento es un proceso impulsado por el comportamiento de la tasa de acumulación y la tasa de ganancia. Nuestros análisis econométricos brindan apoyo empírico a la afirmación marxista sobre el papel fundamental de la tasa de ganancia, y sus elementos constitutivos, en la acumulación de capital y, en consecuencia, en el crecimiento económico”.

III. OTRAS REFERENCIAS BIBLIOGRÁFICAS

UN CASO DE ESTUDIO SOBRE LAS APLICACIONES DE LOS MODELOS DE REGRESIÓN LINEAL: ANÁLISIS DE TRATAMIENTOS PARA POTABILIZACIÓN DEL AGUA MEDIANTE MODELOS LINEALES GENERALIZADOS, PARTE I

isadore nabi

REFERENCIAS

Abril Díaz, N., Bárcena Ruiz, A., Fernández Reyes, E., Galván Cejudo, A., Jorrín Novo, J., Peinado Peinado, J., . . . Túñez Fiñana, I. (6 de Julio de 2021). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. Obtenido de Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba: https://www.uco.es/dptos/bioquimica-biol-mol/pdfs/08_ESPECTROFOTOMETRIA.pdf

Asociación Española de Fabricantes de Agronutrientes. (26 de Enero de 2021). Clasificación del pH. Obtenido de Glosario de términos útiles en Agronutrición: https://aefa-agronutrientes.org/glosario-de-terminos-utiles-en-agronutricion/clasificacion-del-ph

Atil Husni, I., Nyoman Budiantara, I., & Zain, I. (2018). Partial hypothesis testing of truncated spline model in nonparametric regression. College Park, Maryland: American Institute of Physics Conference Proceedings. Obtenido de https://aip.scitation.org/doi/pdf/10.1063/1.5062798

Bermúdez Cabrera, X., Fleites Ramírez, M., & Contreras Moya, A. M. (Septiembre-diciembre de 2009). ESTUDIO DEL PROCESO DE COAGULACIÓN-FLOCULACIÓN DE AGUAS RESIDUALES DE LA EMPRESA TEXTIL «DESEMBARCO DEL GRANMA» A ESCALA DE LABORATORIO. Revista de Tecnología Química, XXIX(3), 64-73. Obtenido de https://www.redalyc.org/pdf/4455/445543760009.pdf

Cepeda, Z., & Cepeda C., E. (2005). Application of Generalized Linear Models to Data Analysis in Drinking Water Treatment. Revista Colombiana de Estad ́ıstica, XXVIII(2), 233-242.

Domènech, X., & Peral, J. (2006). Química Ambiental de sistemas terrestres. (S. REVERTÉ, Ed.) Barcelona.

Li, M., Duan, N., Zhang, D., Li, C.-H., & Ming, Z. (2009). Collaborative Decoding: Partial Hypothesis Re-ranking Using Translation Consensus between Decoders. Suntec, Singapore: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Obtenido de https://aclanthology.org/P09-1066.pdf

Nabi, I. (27 de Agosto de 2021). Modelos Lineales Generalizados. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/08/modelos-lineales-generalizados-isadore-nabi.pdf

Nabi, I. (21 de Septiembre de 2021). Supuestos del Modelo Clásico de Regresión Lineal y de los Modelos Lineales Generalizados. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/09/24/supuestos-del-modelo-clasico-de-regresion-lineal-y-de-los-modelos-lineales-generalizados/

Organización Mundial de la Salud. (Mayo de 2009). Tratamiento de emergencia del agua potable en el lugar de consumo. Obtenido de http://bvsper.paho.org/share/ETRAS/AyS/texcom/desastres/opsguia5.pdf

Pérez de la Cruz, F. J., & Urrea Mallebrera, M. A. (21 de Enero de 2021). ABASTECIMIENTO DE AGUAS. Coagulación y floculación. Obtenido de Universidad Politécnica de Cartagena: https://ocw.bib.upct.es/pluginfile.php/6019/mod_resource/content/1/Tema_06_COAGULACION_Y_FLOCULACION.pdf

Rahim, F., Budiantara, N., & Permatasari, E. O. (Marzo de 2019). Spline Truncated Nonparametric Regression Modeling for Maternal Mortality Rate in East Java. Jurnal Penelitian Sosial Keagamaan, II(1), 39-44. Obtenido de https://media.neliti.com/media/publications/323488-spline-truncated-nonparametric-regressio-fae11742.pdf

ENCUESTA NACIONAL SOBRE LOS ASPECTOS DE LA VIRTUALIDAD VINCULADOS CON LA PANDEMIA DEL COVID-19 (ENAVIRPA 2021)

ISADORE NABI

VII. REFERENCIAS

Aldrich, J. H., & Nelson, F. D. (1984). Linear Probability, Logit, and Probit Models. Beverly Hills: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Allen, M. (2017). The SAGE Encyclopedia of COMMUNICATION RESEARCH METHODS. London: SAGE Publications, Inc.

AMERICAN PSYCHOLOGICAL ASSOCIATION. (2021, Julio 15). level. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/level

AMERICAN PYSCHOLOGICAL ASSOCIATION. (2021, Julio 15). factor. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/factor

AMERICAN PYSCHOLOGY ASSOCIATION. (2021, Julio 15). logistic regression (LR). Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/logistic-regression

Barrios, J. (2019, Julio 19). La matriz de confusión y sus métricas . Retrieved from Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Bhuptani, R. (2020, Julio 13). Quora. Retrieved from What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Birnbaum, Z. W., & Sirken, M. G. (1950, Marzo). Bias Due to Non-Availability in Sampling Surveys. Journal of the American Statistical Association, 45(249), 98-111.

Burrus, C. S. (2021, Julio 7). Iterative Reweighted Least Squares. Retrieved from https://cnx.org/exports/92b90377-2b34-49e4-b26f-7fe572db78a1@12.pdf/iterative-reweighted-least-squares-12.pdf

Centro Centroamericano de Población. (2021, Abril 28). Variables y escalas de medición. Retrieved from Universidad de Costa Rica: https://ccp.ucr.ac.cr/cursos/epidistancia/contenido/2_escmed.html

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Departamento Administrativo Nacional de Estadística. (2003). Metodología de Diseño Muestral. Bogotá: Dirección Sistema Nacional de Información Estadística. Retrieved from https://www.dane.gov.co/files/EDI/anexos_generales/Metodologia_diseno_muestral_anexo1.pdf?phpMyAdmin=a9ticq8rv198vhk5e8cck52r11

Díaz-Narváez, V. P. (2017). Regresión logística y decisiones clínicas. Nutrición Hospitalaria, 34(6), 1505-1505. Retrieved from https://scielo.isciii.es/pdf/nh/v34n6/36_diaz.pdf

Google Developers. (2021, Julio 19). Clasificación: Exactitud. Retrieved from https://developers.google.com/machine-learning/crash-course/classification/accuracy

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Gujarati, D., & Porter, D. (2010, Julio 8). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Retrieved from Homocedasticidad.

Haskett, D. R. (2014, Octubre 10). «Mitochondrial DNA and Human Evolution» (1987), by «Mitochondrial DNA and Human Evolution» (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson. Retrieved from The Embryo Project Encyclopedia: https://embryo.asu.edu/pages/mitochondrial-dna-and-human-evolution-1987-rebecca-louise-cann-mark-stoneking-and-allan

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

Instituto dei Sistemi Complessi. (2021, Febrero 27). Topolical vs Metric Distance. Retrieved from Biological Systems: https://www.isc.cnr.it/research/topics/physical-biology/biological-systems/topological-vs-metric-distance/

Instituto Nacional de Estadística y Censos de Costa Rica. (2016, Julio). Manual de Clasificación Geográfica con Fines Estadísticos de Costa Rica. Retrieved from Biblioteca Virtual: https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/meinstitucionalmcgfecr.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Retrieved from https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2021, 7 14). Factor de Expansión. Retrieved from INEC: https://www.inec.cr/sites/default/files/_book/F.html

Instituto Nacional de Estadística y Censos de la República Argentina. (2019). Encuesta de Actividades de Niños, Niñas y Adolescentes 2016-2017. Factores de expansión, estimación y cálculo de los errores por muestra para el dominio rural. Buenos Aires: Ministerio de Hacienda. Retrieved from https://www.indec.gob.ar/ftp/cuadros/menusuperior/eanna/anexo_bases_eanna_rural.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

Jose, K. (2020, Junio 27). Graph Theory | Isomorphic Trees. Retrieved from Towards Data Science: https://towardsdatascience.com/graph-theory-isomorphic-trees-7d48aa577e46

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Retrieved from https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Kolmogórov, A. N., & Fomin, S. V. (1978). Elementos de la Teoría de Funciones y del Análisis Funcional (Tercera ed.). (q. e.-m. Traducido del ruso por Carlos Vega, Trans.) Moscú: MIR.

Liao, T. F. (1994). INTERPRETING PROBABILITY MODELS. Logit, Probit, and Other Generalized Linear Models. Iowa: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Lipschutz, S. (1992). Álgebra Lineal. Madrid: McGraw-Hill.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

McCullagah, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135(3), 370-384.

Online Stat Book. (2021, Julio 15). Levels of an Independent Variable. Retrieved from Independent and dependent variables: https://onlinestatbook.com/2/introduction/variables.html

Patil, G. P., & Shorrock, R. (1965). On Certain Properties of the Exponential-type Families. Journal of the Royal Statistical, 27(1), 94-99.

Perry, J. (2014, Abril 2). NORM TO/FROM METRIC. Retrieved from The University of Southern Mississippi: https://www.math.usm.edu/perry/old_classes/mat681sp14/norm_and_metric.pdf

Ritchey, F. (2002). ESTADÍSTICA PARA LAS CIENCIAS SOCIALES. El potencial de la imaginación estadística. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.

Samuels, S. (2014, 11 19). Can I get to an approximation of the population with knowledge of the expansion factor? Retrieved from Cross Validated. StackExchange: https://stats.stackexchange.com/questions/124750/can-i-get-to-an-approximation-of-the-population-with-knowledge-of-the-expansion

StackExchange Cross Validated. (2017, Febrero 2). “Least Squares” and “Linear Regression”, are they synonyms? Retrieved from What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

StackExchange Data Science. (2016, Junio 19). Is GLM a statistical or machine learning model? Retrieved from https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (2014, Marzo 15). Supervised Learning, Unsupervised Learning, Regression. Retrieved from https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

TalkStats. (2011, Noviembre 29). SPSS. Retrieved from Forums: http://www.talkstats.com/threads/what-is-the-difference-between-a-factor-and-a-covariate-for-multinomial-logistic-reg.21864/

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Retrieved from https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

van den Berg, R. G. (2021, Julio 15). Measurement Levels – What and Why? Retrieved from SPSS Tutorials: https://www.spss-tutorials.com/measurement-levels/

Weisstein, E. W. (2021, Julio 15). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 21). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 18). Smooth Function. Retrieved from Wolfram MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SmoothFunction.html

Wikimedia. (2021, Abril 6). Commons. Retrieved from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg

Wikipedia. (2021, Julio 6). Graph isomorphism. Retrieved from Morphism: https://en.wikipedia.org/wiki/Graph_isomorphism

Wikipedia. (2021, Mayo 21). Iterative proportional fitting. Retrieved from Statistical algorithms: https://en.wikipedia.org/wiki/Iterative_proportional_fitting

Wikipedia. (2021, Febrero 25). Iteratively reweighted least squares. Retrieved from Least squares: https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares

Wikipedia. (2021, Julio 13). Logistic function. Retrieved from Growth curves: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Mayo 22). Logistic regression. Retrieved from Regression models: https://en.wikipedia.org/wiki/Logistic_regression

Wikipedia. (2021, Junio 14). Logit. Retrieved from Special functions: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Julio 8). Lp space. Retrieved from Measure theory: https://www.wikiwand.com/en/Lp_space

Wikipedia. (2021, Abril 15). Odds. Retrieved from Wagering: https://en.wikipedia.org/wiki/Odds

Wikipedia. (2021, Julio 10). Precision and recall. Retrieved from Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

Wooldridge, J. (2010). Econometric Analysis of Cross Section and Panel Data (Segunda ed.). Cambridge, Massachusetts: MIT Press.

SOBRE LOS ESTIMADORES DE BAYES, EL ANÁLISIS DE GRUPOS Y LAS MIXTURAS GAUSSIANAS

Un Análisis Teórico General del Paquete densityMclust del programa estadístico R

ISADORE NABI

ANÁLISIS DEL USO DEL CONTRASTE DE HIPÓTESIS EN EL CONTEXTO DE LA ESPECIFICACIÓN ÓPTIMA DE UN MODELO DE REGRESIÓN

ISADORE NABI