III. LA DEFINICIÓN SUBJETIVA DEL VALOR COMO PRINCIPIO PSEUDOCIENTÍFICO (BORRADOR)

ISADORE NABI

Este, y otros capítulos antes subidos, pertenecen a un libro en proceso de construcción titulado “EL SISTEMA DIALÉCTICO-MATERIALISTA COMO PROGRAMA DE DEMARCACIÓN DE LAS CIENCIAS. CASO DE APLICACIÓN: LA DEFINICIÓN SUBJETIVA DEL VALOR DE LAS MERCANCÍAS COMO PRINCIPIO PSEUDOCIENTÍFICO“.

La imagen del encabezado fue tomada de http://davidharvey.org/2018/03/marxs-refusal-of-the-labour-theory-of-value-by-david-harvey/.

SOBRE LOS TENSORES: SU INTERPRETACIÓN CONCEPTUAL

Como señala (Kaplan, 1985, pág. 297), cuando se introducen coordenadas curvilíneas los métodos matriciales ya no resultan adecuados para el análisis de las operaciones vectoriales fundamentales. El análisis deseado se puede llevar a cabo con la ayuda de las estructuras matemáticas conocidas como tensores.

Los tensores son el resultado de un producto tensorial denotado como A⨂B. Un producto tensorial generaliza la noción de producto cartesiano o producto directo A × B y de suma directa A⨁B para espacios de coordenadas curvilíneas conocidos como variedades (como por ejemplo, las variedades pseudo-riemannianas bajo la cual está modelada la Teoría General de la Relatividad); lo anterior se afirma porque si se verifican las propiedades de un tensor u operador tensorial se podrá verificar que se comporta como una suma, pero su resultado (el espacio o conjunto generado) se comporta como una multiplicación. Esto está relacionado con poder generalizar nociones geométricas (que a nivel de matrices de datos tiene implicaciones en poder medir las longitudes entre los datos –y todo lo que eso implica, ni más ni menos que la base de las mediciones de todo tipo-), como por ejemplo la ortogonalidad entre vectores para una gama más general de superficies entre muchísimas otras cuestiones; de hecho, una variedad generaliza el concepto de superficie. En el lenguaje de programación R, un array multidimensional es un tensor, es decir, el resultado de un producto tensorial entre vectores, mientras que una matriz es resultado de un producto cartesiano entre vectores y es por ello que los primeros se pueden concebir geométricamente como un cubo n-dimensional o una estructura cúbica de medición con n-coordenadas, que además pueden ser curvilíneas. Una matriz es un tensor de dos dimensiones o coordenadas lineales.

Un vector es una flecha que representa una cantidad con magnitud y dirección, en donde la longitud de la flecha es proporcional a la magnitud del vector y la orientación de la flecha revela la dirección del vector.

También se puede representar con vectores otras cosas, como áreas y volúmenes. Para hacer esto, se debe hacer a la longitud del vector una magnitud proporcional a la magnitud del área a calcular y la dirección del vector debe ser ortogonal a la superficie o región de la cual se desea estimar el área o volumen.

Los vectores base o vectores unitarios (cuando la base del espacio lineal es canónica, es decir, que cada vector que conforma la base está compuesto en su pertinente coordenada por la unidad y en el resto por ceros) tienen longitud 1. Estos vectores son los vectores directores del sistema de coordenadas (porque le dan dirección a cada uno de los ejes del plano, puesto que precisamente cada uno representa un eje).

Para encontrar los componentes de un vector (en el caso de un sistema de tres coordenadas, el componente x, el componente y, el componente z) se proyecta el vector sobre el eje que corresponde al componente a encontrar, por ejemplo, si se desea encontrar el componente x del vector, la proyección se realiza sobre X. Entre mayor sea el ángulo entre un vector y un eje de referencia (X,Y,Z), menor será la magnitud del componente correspondiente a dicho eje (este componente, en este ejemplo, puede ser x, o z); el inverso también es cierto. La magnitud de cualquier vector dentro del plano real o complejo puede determinarse como combinación lineal de los vectores base con el campo de los reales o los complejos, respectivamente. Esto implica que la magnitud de un vector (y por consiguiente de los componentes dentro del mismo, al ser una estructura lineal) puede expresarse como determinada cantidad de vectores unitarios (de longitud 1) de los diferentes ejes de coordenadas, en donde cada componente del vector se expresará unívocamente en una cantidad determinada de vectores unitarios del eje correspondiente a dicho componente.

Para generalizar los resultados anteriores a un vector de vectores A (que entre otras cosas permite agruparlos en una misma estructura matemática -por ello a nivel del programa R los arrays tienen contenido del mismo tipo y relacionado entre sí[1]-), se establece que dicho vector A tendrá los componentes A_X, A_Y, A_Z, que representan a los componentes X, Y y Z, respectivamente. Se requiere establecer un índice para cada vector (el índice es en este caso el subíndice) porque sólo existe un indicador direccional (es decir, un vector base) por componente (porque cada componente se corresponde con su respectivo eje).

Esto es lo que hace a los vectores ser tensores de rango 1, que tienen un índice o un vector base por componente. Bajo la misma lógica, los escalares pueden ser considerados tensores de rango cero, porque los escalares no tienen ningún indicador direccional (son una cantidad con magnitud, pero sin sentido) y, por consiguiente, no necesitan índice.

Los tensores son combinaciones entre componentes auxiliares de naturaleza diversa (parámetros, coeficientes, pendientes, que son en última instancia algún elemento de algún campo escalar o anillo) y componentes centrales (los miembros de la base del espacio vectorial o módulo, que expresan las variables fundamentales del sistema que se describe), que sirven para estimar de forma más robusta (en términos de precisión cuantitativa y especificidad cualitativa) las coordenadas de un sistema de referencia.

El número de índices de cada tensor será igual al número de vectores base por componente (en el caso de los tensores, los componentes y los vectores base no tienen necesariamente una relación uno-a-uno, por lo que a un componente le puede corresponder más de un vector base o vector director del sistema de coordenadas).

Considérense, por ejemplo, las fuerzas que actúan al interior de un objeto sólido cualquiera en un espacio de tres dimensiones. Este interior está segmentado en términos de superficies (que son regiones de dicho espacio a manera de planos) por los vectores base de tipo área X, Y, Z. Asúmase además que cada una de las fuerzas actúa en cada una de las regiones del espacio (esto no necesariamente es así, sólo se usa un ejemplo así para que sea más fácilmente capturable a la intuición; aunque lógico-formalmente sí es así, filosóficamente y en términos de las ciencias aplicadas no necesariamente). Lo anterior significa que, debido a la diferente dirección de los vectores base, la acción de dichas fuerzas tiene orientaciones diferentes según la región del espacio de la que se trate. Esto es así porque cada vector base tiene una dirección diferente (al menos si su dirección se estudia cuando está anclado al origen) y cada vector base determina la dirección de la acción de cada fuerza en la región del espacio que a dicho vector base le corresponde (una región -lo que de forma más general puede concebirse como una caracterización dentro de un sistema referencial- estudiada puede estar compuesta por subregiones bajo el efecto de fuerzas diferentes). Así, para poder caracterizar completamente las fuerzas que actúan dentro del objeto sólido (lo que equivale precisamente a caracterizar completamente al objeto sólido mismo -bajo las limitaciones que la teoría tiene frente a la práctica-), es necesario que cada fuerza pueda ser expresada en términos de todas las regiones del espacio en las que actúa (cada región se corresponde con un vector director o vector base), por lo que cada fuerza se debe vincular a la correspondiente cantidad regiones del sólido en las que actúa (se debe vincular a la correspondiente cantidad de vectores base a los que está asociada).

Así, los tensores permiten caracterizar completamente todas las fuerzas posibles y todas las regiones posibles sobre las que actúan tales fuerzas.

Los tensores permiten que todos los observadores en todos los sistemas de coordenadas de referencia (marco referencial, de ahora en adelante) puedan estar de acuerdo sobre las coordenadas establecidas. El acuerdo no consiste en un acuerdo sobre los vectores base (que pueden variar de un espacio a otro), tampoco en los componentes (que pueden variar según el campo escalar), sino en las combinaciones entre vectores base y componentes. La razón de lo anterior radica en que al aplicar una transformación sobre los vectores base (para pasar de un sistema referencial a otro de alguna forma equivalente), en el contexto de los tensores, la estructura algebraica resultante tendrá invariablemente una única dirección sin importar el marco referencial; por su parte, al transformar un componente se logran mantener las combinaciones entre componentes y vectores base para todos los observadores (i.e., para todos los marcos referenciales -cada observador está en un marco referencial-).

Por tanto, los tensores expresan matemáticamente (i.e., lógico-formalmente) la unidad a nivel del fenómeno (social o natural) de las fuerzas contrarias entre sí que lo componen, así como también la tensión que implica la lucha de tales fuerzas por imponerse la una a la otra durante el proceso evolutivo del fenómeno estudiado.

Como se señala en (Universidad de Granada, 2022), en el contexto de la estadística aplicada, un array es un tipo de dato estructurado que permite almacenar un conjunto de datos homogéneo, es decir, todos ellos del mismo tipo y relacionados. Cada uno de los elementos que componen un vector pueden ser de tipo simple como caracteres, entero o real, o de tipo compuesto o estructurado como son vectores, estructuras, listas.

A los datos almacenados en un array se les denomina elementos; al número de elementos de un array se les denomina tamaño o rango del vector; este rango puede determinarse de forma equivalente, en el caso de arrays multidimensionales (tensores), a través del número de ejes. Para acceder a los elementos individuales de un array se emplea un índice que será un número entero no negativo que indicará la posición del elemento dentro del array. Para referirse a una posición particular o elemento dentro del array, se especifica el nombre del array y el número de posición del elemento particular dentro del mismo, el índice.

Los arrays en gran parte se definen como las variables ordinarias, excepto en que cada array debe acompañarse de una especificación de tamaño (número de elementos). Para un array unidimensional, el tamaño se especifica con una expresión entera positiva encerrada entre paréntesis cuadrados. La expresión es normalmente una constante entera positiva.

En suma, cada dimensión de un tensor/array multidimensional (que, al ser en sí mismo una estructura de datos con las propiedades usuales de los números, es también un espacio vectorial, específicamente un espacio euclidiano) está compuesta por un número de filas y columnas especificado.

En la mayoría de los casos, los tensores se pueden considerar como matrices anidadas de valores que pueden tener cualquier número de dimensiones. Un tensor con una dimensión se puede considerar como un vector, un tensor con dos dimensiones como una matriz y un tensor con tres dimensiones se puede considerar como un paralelepípedo. El número de dimensiones que tiene un tensor se llama su rango y la longitud en cada dimensión describe su forma. El rango de un tensor es el número de índices necesarios para seleccionar de forma única cada elemento del tensor (TensorFlow, 2022). El rango también se conoce como “orden” o “grado”; como se señaló antes, otra forma de ver los tensores es como arrays multidimensionales (RStudio, 2022).

Como señala (Weisstein, 2022), formalmente hablando el rango de un tensor es el número total de índices contravariantes y covariantes de un tensor, relativos a los vectores contravariantes y covariantes, respectivamente. El rango R de un tensor es independiente del número de dimensiones N del espacio subyacente en el que el tensor se localice. Adicionalmente, se señala en la documentación R sobre el paquete ‘tensor’, que el producto tensorial de dos arrays es teóricamente un producto exterior de tales arrays colapsados en extensiones específicas al sumar a lo largo de las diagonales apropiadas. Por ejemplo, un producto matricial es el producto tensorial a lo largo de la segunda extensión de la primera matriz y la primera extensión de la segunda matriz.

Fuente: (java T point, 2022).
Fuente: (java T point, 2022).
Fuente: (java T point, 2022).
Fuente: (geeksforgeeks, 2022).
Fuente: (Patidar, 2019).
Fuente: (Paul, 2018).

En el modelo de datos multidimensional, los datos se organizan en una jerarquía que representa diferentes niveles de detalles. Un modelo multidimensional visualiza los datos en forma de cubo de datos. Un cubo de datos permite modelar y visualizar datos en múltiples dimensiones. Se define por dimensiones y hechos.

Las dimensiones son las perspectivas o entidades sobre las cuales una organización mantiene registros. Por ejemplo, una tienda puede crear un almacén de datos de ventas para mantener registros de las ventas de la tienda para la dimensión de tiempo, artículo y ubicación. Estas dimensiones permiten registro para realizar un seguimiento de las cosas, por ejemplo, las ventas mensuales de artículos y las ubicaciones en las que se vendieron los artículos. Cada dimensión tiene una tabla relacionada con ella, llamada tabla dimensional, que describe la dimensión con más detalle.

Referencias

Fleisch, D. A. (2012). What’s a tensor? Recuperado el 26 de Marzo de 2022, de Dan Fleisch: https://www.youtube.com/watch?v=f5liqUk0ZTw

geeksforgeeks. (26 de Marzo de 2022). Multidimensional Arrays in C / C++. Obtenido de geeksforgeeks.org: https://www.geeksforgeeks.org/multidimensional-arrays-c-cpp/

java T point. (Marzo de 25 de 2022). What is Multi-Dimensional Data Model? Obtenido de Data Warehouse: https://www.javatpoint.com/data-warehouse-what-is-multi-dimensional-data-model

Kaplan, W. (1985). CÁLCULO AVANZADO. MÉXICO, D.F.: COMPAÑÍA EDITORIAL CONTINENTAL, S.A. DE C.V., MÉXICO.

Patidar, P. (14 de Diciembre de 2019). Tensors — Representation of Data In Neural Networks. Obtenido de Medium: https://medium.com/mlait/tensors-representation-of-data-in-neural-networks-bbe8a711b93b

Paul, S. (12 de Septiembre de 2018). Investigating Tensors with PyTorch. Obtenido de DataCamp: https://www.datacamp.com/community/tutorials/investigating-tensors-pytorch

RStudio. (25 de Marzo de 2022). Tensors and operations. Obtenido de TensorFlow for R: https://tensorflow.rstudio.com/tutorials/advanced/customization/tensors-operations/

TensorFlow. (25 de Marzo de 2022). tf.rank. Obtenido de TensorFlow Core v2.8.0 : https://www.tensorflow.org/api_docs/python/tf/rank

Universidad de Granada. (25 de Marzo de 2022). Arrays y cadenas. Obtenido de Departamento de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada: https://ccia.ugr.es/~jfv/ed1/c/cdrom/cap5/f_cap52.htm.

Weisstein, E. W. (25 de Marzo de 2022). Tensor Rank. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/TensorRank.html


[1] Véase (Universidad de Granada, 2022).

ASPECTOS CONCEPTUALES GENERALES DEL DISEÑO EXPERIMENTAL POR BLOQUES

ISADORE NABI

Como se señala en (Dey, 2010, págs. 1-2), en determinadas situaciones experimentales, puede haber variaciones sistemáticas presentes entre las unidades experimentales[1]. Por ejemplo, en un experimento de campo, las unidades experimentales suelen ser parcelas de tierra. En un experimento de este tipo, puede haber un gradiente de fecundidad tal que las parcelas del mismo nivel de fecundidad sean más homogéneas que las que tienen distintos niveles de fecundidad. En experimentos con lechones como unidades experimentales, es muy plausible que los lechones pertenecientes a la misma camada estén genéticamente más cercanos entre sí (naciendo del mismo par de padres) que los que pertenecen a diferentes camadas. De manera similar, en experimentos con ganado, pueden estar involucradas diferentes razas (o diferentes edades) y se espera que los animales que pertenecen a la misma raza sean más parecidos que los que pertenecen a diferentes razas. En el contexto de los ensayos clínicos con pacientes que forman las unidades experimentales, el ensayo puede realizarse en diferentes centros (principalmente para obtener un número suficiente de observaciones) y los pacientes del mismo centro pueden ser más parecidos que los de diferentes centros debido a las diferencias en el tratamiento. prácticas y/o procedimientos de gestión seguidos en los diferentes centros. Los ejemplos anteriores, que son meramente ilustrativos y de ninguna manera exhaustivos, demuestran que en muchas situaciones existe una variación sistemática entre las unidades experimentales. En tales situaciones, el uso de un diseño completamente aleatorio no es apropiado. Más bien, se debe aprovechar la información a priori sobre esta variación sistemática mientras se diseña el experimento en el sentido de que esta información se debe utilizar durante el diseño para eliminar el efecto de dicha variabilidad. El impacto de este esfuerzo se verá reflejado en un error reducido, aumentando así la sensibilidad del experimento. Las consideraciones anteriores llevaron a la noción de control o bloqueo local. Los grupos de unidades experimentales relativamente homogéneas se denominan bloques. Cuando el bloqueo se realiza de acuerdo con un atributo, obtenemos un diseño de bloque. En un diseño de bloques, los tratamientos se aplican aleatoriamente a las unidades experimentales dentro de un bloque, y la asignación aleatoria de tratamientos a las unidades experimentales dentro de un bloque se realiza de forma independiente en cada bloque. El más simple entre los diseños de bloques es el diseño de bloques completos al azar.

Adicionalmente, (Batabyal, Sarkar, & Mandal, 2015, pág. 19) señalan que el experimento de gradiente de fertilidad (específicamente el del experimento por ellos analizado) se realizó antes del experimento del cultivo de prueba según la metodología inductiva propuesta por Ramamoorthy et al (1967), durante el verano de 2008-09, dividiendo el campo experimental en tres franjas rectangulares a lo largo del ancho. Los gradientes de fertilidad se crearon aplicando dosis graduadas de fertilizante N, P y K en las tiras como se muestra en la Tabla 1. El maíz forrajero se cultivó exhaustivamente para ayudar a que los fertilizantes se transformaran en el suelo por la planta y los microbios.

Figura 1

Fuente: (Batabyal, Sarkar, & Mandal, 2015, pág. 19).

La referencia anterior permite comprender conceptualmente el concepto gradiente al que se refirió Aloke Day en penúltima referencia realizada, así como también generalizar conceptualmente lo expuesto por este autor. Así, expresando de forma abstracta lo anterior, puede afirmarse que, en ciertas condiciones experimentales, pueden presentarse variaciones sistemáticas entre las unidades experimentales. En tales experimentos, existe variabilidad diferenciada en la distribución de los datos muestrales en las subregiones del espacio de muestra (en la teoría del diseño muestral estas subregiones son conocidas como bloques) a causa de un conjunto de factores subyacentes (por ello se considera la variabilidad de carácter sistemático) y esa variabilidad diferenciada por regiones se expresa matemáticamente como un gradiente, es decir, como una matriz en cuyo interior se contienen las derivadas parciales de primer orden de la función objetivo (la que explica la propagación diferenciada de la variabilidad) evaluadas en las subregiones pertinentes. Esta es la forma usual en que en el contexto de la teoría del diseño de experimentos y los ensayos clínicos se maneja el problema de volatilidad diferenciada de la varianza. El concepto bloque formaliza la noción de control local e implica cierta homogeneidad mínima entre los elementos de cada grupo, tiene como objetivo diseñar el experimento de tal forma que se elimine el efecto de esta variabilidad sistemática. Por supuesto, en otros contextos aplicados distintos de los ensayos clínicos puede desearse analizar el comportamiento del fenómeno estudiado considerando los efectos que la variabilidad diferenciada de la varianza y por ello existen modelos como el de heterocedasticidad condicional autorregresiva. Cuando los bloques han sido organizados alrededor de un atributo se está en presencia de un diseño por bloques y, en tal escenario, las variables explicativas (los tratamientos experimentales, para el caso aplicado) son consideradas como aleatorias (se aplican aleatoriamente sobre las unidades experimentales -pacientes humanos o de otra especie- al interior de un bloque). Esto se establece bajo el supuesto de que la aplicación de tales tratamientos a los elementos de cada bloque es linealmente independiente o, lo que es lo mismo, que al realizar la operación producto vectorial (exterior) entre los vectores que contienen las variables consideradas como estocásticas se genera un sistema de ecuaciones homogéneo de solución no nula.

Como señala (Dey, 2010, pág. 3), el más simple entre los diseños de bloques es el diseño de bloques completos al azar. En tal diseño, se requiere que cada bloque tenga tantas unidades experimentales como el número de tratamientos a evaluar, es decir, el tamaño del bloque sea igual al número de tratamientos. Sin embargo, no siempre es posible adoptar un diseño de bloques completos al azar en cada situación experimental. En primer lugar, si se supone que la variación intrabloque depende directamente del tamaño del bloque, entonces es preferible la adopción de un diseño con bloques de tamaños pequeños a uno que tenga tamaños de bloque grandes. Esto restringe el uso de diseños de bloques completos al azar en situaciones donde el número de tratamientos es grande. Por ejemplo, en los experimentos agronómicos, el experimentador generalmente elige un bloque de tamaño 10-12 y, si se acepta, no se puede adoptar un diseño de bloque completo al azar en situaciones en las que, digamos, se van a comparar 20 tratamientos. Además, en muchas situaciones experimentales, el tamaño del bloque está determinado por la naturaleza del experimento. Por ejemplo, con algunos experimentos en psicología, es bastante común considerar a los dos miembros de un par de gemelos como unidades experimentales de un bloque. En ese caso, claramente no se puede realizar diseño de bloques completos al azar si el número de tratamientos es mayor que dos (puesto que por definición en cada bloque existirá únicamente una observación -. De manera similar, es razonable tomar a los compañeros de camada (por ejemplo, ratones) como unidades de un bloque y el tamaño de la camada puede no ser adecuado para acomodar todos los tratamientos bajo prueba.

Los pocos ejemplos considerados anteriormente muestran claramente que, en muchas situaciones, no se puede adoptar un diseño de bloques completos al azar y, por lo tanto, es necesario buscar diseños en los que no todos los tratamientos aparezcan en cada bloque. Estos diseños se denominan diseños de bloques incompletos. Como señala (Dey, 2010, págs. 3-4), el tipo de diseño más importante del conjunto de diseños balanceados es el diseño de bloques balanceado e incompleto (BIB, por su nombre en inglés) y sobre ellos debe decirse que estos todavía se encuentran útiles en el diseño de experimentos en diversos campos y en los últimos años se han encontrado aplicaciones más nuevas de estos diseños, por ejemplo, en criptografía visual (véase, por ejemplo, Bose y Mukerjee (2006), Adhikary, Bose, Kumar y Roy (2007) y las referencias allí citadas).

Como señala (Wikipedia, 2021), el diseño por bloques es una estructura de incidencia[2] consistente en un conjunto de elementos expresados en familias denominadas bloques, escogidos tal que las frecuencias de los elementos satisfacen ciertas condiciones que permiten que la colección de bloques exhiba simetría (balance de bloques). Si no se dan más especificaciones, usualmente por “diseño de bloques” se hace referencia a un diseño de bloques balanceado e incompleto. Se dice que un diseño está balanceado hasta τ si todos los subconjuntos τ del conjunto original se presentan (como evento estadístico) en la misma cantidad de bloques λ. Cuando τ no está especificado, generalmente se puede suponer que es 2, lo que significa que cada par de elementos se encuentra en el mismo número de bloques y el diseño está “balanceado por pares”. Cualquier diseño equilibrado hasta τ también está equilibrado en todos los valores más bajos de τ (aunque con diferentes valores para λ). Por ejemplo, un diseño balanceado por pares (τ=2) es también regular (τ=1). Cuando falla el requisito de equilibrio, un diseño puede estar parcialmente equilibrado si los subconjuntos τ se pueden dividir en n-ésimas clases, cada una con su correspondiente (y diferente) valor para λ.

Así, señala última fuente referida que, para el caso de τ=2, estos diseños por bloques se conocen como PBIB(n), cuyas clases forman un esquema de asociación[3]. La teoría de los esquemas de asociación generaliza la teoría de los caracteres de representación lineal de grupos (y, por consiguiente, los esquemas de asociación generalizan la noción de grupos). Por lo general, se asume que los diseños están incompletos, lo que significa que ningún bloque contiene todos los elementos del conjunto, descartando así un diseño trivial (esta es otra forma en que se expresa la creencia de la estadística matemática clásica de que, si en un sistema de ecuaciones una ecuación es linealmente dependiente de otra u otras, entonces la variable que es descrita mediante tal ecuación no aporta información relevante). Los diseños por bloques pueden tener (o no) bloques repetidos. Cuando no tienen bloques repetidos, se denominan simples, en cuyo caso la familia de bloques es un conjunto en lugar de un multiconjunto. En estadística, el diseño de bloques se extiende a diseños de bloques no binarios los cuales pueden contener múltiples copias de un elemento de X, lo que implica que un diseño es regular sólo si es también binario. La matriz de incidencia de un diseño no binario (véase más adelante) enlista el número de veces que cada elemento de repite en cada bloque.

Adicionalmente, como señala (Dey, 2010, pág. 4), existen generalizaciones de los diseños BIB. Los diseños BIB son los únicos diseños en la clase de diseños de experimentos binarios[4], equirreplicados[5] y propios[6] que son balanceados (según se definió antes) tanto en varianza como en eficiencia; sin embargo, es posible encontrar otros diseños con equilibrio de varianza y eficiencia si uno expande la clase de diseños a diseños no binarios, no equirreplicados o no apropiados. Los métodos de construcción de diseños balanceados en varianza y eficiencia con replicaciones posiblemente desiguales y tamaños de bloques desiguales son el estado del arte más avanzado en el ámbito de los diseños balanceados.

Además, como se señala en la última fuente referida, existen los diseños de experimentos por bloques parcialmente balanceados, dentro de los cuales los más estudiados y aplicados empíricamente son los diseños de bloques parcialmente balanceados (PBIB, por su nombre en inglés). Los diseños de PBIB se introducen formalmente mediante la noción de esquema de asociación antes definida. Existen diseños con dos o más clases asociadas, así como también otros diseños parcialmente balanceados que no son necesariamente diseños PBIB. Estos incluyen los diseños conocidos como de celosía, cíclico, bloque enlazado, diseños en C y diseños α.

REFERENCIAS

Batabyal, K., Sarkar, D., & Mandal, B. (2015). Fertilizer-prescription equations for targeted yield in radish under integrated nutrient management system. Journal of Horticultural Sciences, X(1), 18-23. Obtenido de blob:resource://pdf.js/782dc541-51e4-4535-9551-8b7db5f35d1b

Dey, A. (2010). Incomplete Block Design. Tob Tuck Link, Singapore: World Scientific Publishing Co. Pte. Ltd.

Gupta, S. C., & Jones, B. (Agosto de 1983). Equireplicate Balanced Block Designs with Unequal Block Sizes. Biometrika, LXX(2), 433-440.

Shah, K. R., & Ashish, D. (Septiembre de 1992). Binary Designs Are Not Always the Bes. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, XX(3), 347-351.

Weisstein, E. W. (19 de Septiembre de 2021). Monoid. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Monoid.html

Wikipedia. (6 de Julio de 2021). Block design. Obtenido de Design of experiments: https://en.wikipedia.org/wiki/Block_design

Wikipedia. (27 de Septiembre de 2021). Incidence structure. Obtenido de Incidence geometry: https://en.wikipedia.org/wiki/Incidence_structure


[1] La variabilidad diferenciada de la varianza se encuentra en la literatura bajo el nombre de homogeneidad de varianza u homocedasticidad. Sin embargo, debe señalarse que no necesariamente son equivalentes metodológicamente, lo cual se explica por el hecho de que filosófica e históricamente no lo son. La heterocedasticidad tiene su génesis conceptual en el contexto de las estructuras de datos conocidas como series temporales, mientras que la homogeneidad de varianza tiene su génesis histórica en las estructuras de datos de sección cruzada. La posibilidad de su divergencia metodológica puede verificarse si alguna prueba para varianza no se puede hacer para sección cruzada y sí se puede hacer para series temporales (y/o para datos de panel, lo cual sería necesario investigar) o, por supuesto, a la inversa, que se pueda realizar para datos de sección cruzada y/o de panel, mientras que no sea posible para datos de series temporales (o bien, que sea posible para una estructura de datos, mientras que para la otra y su estructura combinada -datos de panel- no sea posible). Si no son diferentes, resulta técnicamente adecuado (con el fin de evitar ambigüedades) hablar de variabilidad diferenciada de la varianza, en lugar de hablar de “homogeneidad de varianza” o “heterocedasticidad” (puesto que los diferenciaría en un contexto en que son equivalentes). Así, aunque la posibilidad de su equivalencia o divergencia conceptual sea una cuestión fundamentalmente filosófica, su diferenciación se encuentra en las minucias metodológicas de las distintas técnicas estadísticas para medir y clasificar la variabilidad de la varianza. Por supuesto, sus diferencias filosóficas están basada en un hecho histórico-técnico concreto innegable: ambas estructuras de datos son distintas.

[2] Como señala (Wikipedia, 2021), una estructura de incidencia es un sistema abstracto consistente en dos tipos de objeto y una relación única entre ellos que se conoce como estructura de incidencia Se consideran una generalización del concepto de plano. Por su definición, son una estructura métrica vinculada a una estructura algebraica.

[3] Un esquema de asociación es un concepto algebraico que generaliza la noción de grupo. Un grupo es un monoide en el que además se cumple que sus elementos son invertibles. Un monoide es un conjunto cerrado (el equivalente matemático de autocontenido) bajo una operación asociativa binaria y con elemento identidad I que pertenece a S tal que para todo elemento a que pertenece a S se cumple que I*a = a*I = a y se diferencia de un grupo en el sentido de que no exige que sus elementos sean invertibles bajo alguna operación. Véase (Weisstein, 2021).

[4] Como se señala en (Shah & Ashish, 1992, pág. 347), un diseño en el que cada tratamiento aparece como máximo una vez en cualquier bloque en particular.

[5] Como se señala en (Gupta & Jones, 1983, pág. 433), un diseño por bloques equirreplicado es aquel en el que las variables independientes (en el contexto de la bioestadística y la psicometría usualmente son los tipos de tratamiento) se repiten en cada bloque la misma cantidad de veces.  

[6] Como se señala en (Wikipedia, 2021), un diseño por bloques es propio cuando todos los bloques tienen el mismo tamaño. También, como se señala en la fuente referida, se estudian también diseños por bloques que no son necesariamente uniformes; para τ=2 se conocen en la bibliografía bajo el nombre general de diseños equilibrados por pares, en donde cada par de elementos de X (cada par de elementos el conjunto de variables independientes) está contenido en exactamente en λ subconjuntos o bloques, en donde λ pertenece a los números naturales.

SOBRE LA INICIATIVA INTERNACIONAL DE PROMOCIÓN DE POLÍTICA ECONÓMICA (IIPE 2021), EL IMPERIALISMO, CHINA Y LAS FINANZAS INTERNACIONALES

BREVE INTRODUCCIÓN

Este día se publicó una investigación en el sitio web de Michael Roberts que versa, en general, sobre el papel del desarrollo tecnológico en el comercio internacional como mecanismo de acumulación de capital característico de la economía capitalista planetaria en su fase imperialista. Sobre dicha investigación se elabora la presente publicación, la cual está compuesta por tres secciones. En la primera sección se realiza un breve abordaje histórico sobre aspectos teóricos de interés abordados por Roberts en su publicación de naturaleza fundamentalmente empírica. En la segunda sección se presenta la traducción de la publicación de Roberts. Finalmente, en la tercera sección se facilita la descarga de las referencias bibliográficas presentadas por Roberts en su publicación.

I. ASPECTOS TEÓRICOS preliminares

Es importante decir que la teoría sobre el capitalismo en su fase imperialista hunde sus raíces empíricas más importantes el trabajo de Vladimir Lenin (1916) y sus raíces teóricas más importantes en el trabajo de Arghiri Emmanuel (1962). Por supuesto, el trabajo de Lenin no se limitó a ser empírico, pero fue en esta dirección la centralización de sus esfuerzos y ello conforma un punto de partida razonable para un breve análisis sobre cómo (y por qué) han evolucionado las teorías marxistas sobre el imperialismo.

Lenin fue el primer teórico del marxismo que estudió la acumulación de capital a escala planetaria considerando las relaciones centro-perisferia como una generalización económica, política, social y cultural de la lucha de clases nacional; sobre ello no existe debate relevante en el seno de la comunidad marxista. La armonía no es tal cuando se trata de abordar la obra de Arghiri Emmanuel. Cualquier persona lo suficientemente estudiosa de la historia de las ciencias sabrá que, sobre todo en ciencias sociales (con especial énfasis en economía política), la aceptación de una teoría no tiene que ver con motivos puramente académicos sino también políticos. La teoría de economía política internacional (de ahora en adelante economía geopolítica) de Emmanuel tuvo poca aceptación entre la comunidad marxista fundamentalmente no por su polémico uso de la ley del valor en el concierto internacional, sino por las conclusiones políticas que su teoría generaba. La idea central de Emmanuel es que en el concierto interncional ocurre una transformación global de valores a precios de producción como la que ocurre (salvo las particularidades naturales características del incremento en complejidad del sistema) a escala local o nacional. Es esa y no otra la idea fundamental del trabajo de Emmanuel, con independencia del grado de acuerdo (o desacuerdo) que se tenga sobre la forma en que realiza tal planteamiento. La lógica que condujo a Emmanuel a la construcción de esta idea, que no es más que una aplicación global de la lógica local de la transformación de valores en precios de producción ya dada por Marx, parecería ser la misma que la que condujo a construir, por ejemplo, la teoría de la selección natural o la teoría matemática del caos el concepto de autosimilaridad. Esta esta lógica se puede generalizar como se plantea a continuación.

Los componentes (modelados mediante ecuaciones) de una totalidad (modelada mediante un sistema de ecuaciones) comparten una esencia común (i.e., que son isomórficos entre sí) que permite su combinación integrodiferencial de forma armónica y coherente bajo una determinada estructura interna de naturaleza material (objetiva), no-lineal (la totalidad es diferente a la suma de sus partes) y dinámica (el tiempo transcurre) generada por la interacción de tales componentes dadas determinadas condiciones iniciales. La estructura interna del sistema (o totalidad de referencia) condiciona a los componentes que la generan bajo el mismo conjunto de leyes (pero generalizado, por lo que no es formalmente el mismo) que rigen la interacción entre las condiciones iniciales y las relaciones primigenias entre componentes que determinaron la gestación de dicha estructura interna. Estas leyes son: 1. Unidad y Lucha de los Contrarios (que implica emergencia y al menos autoorganización crítica), 2. Salto de lo Cuantitativo a lo Cualitativo (bifurcación), 3. Ley de la Negación de la Negación (que es una forma generalizada de la síntesis química).

SOBRE DIALÉCTICA Y COMPLEJIDAD

Antes de proceder a exponer las fuentes formales y fácticas de la poca popularidad de las teorías de Emmanuel, es necesario decir un par de cuestiones relativas al papel que desempeña el tiempo en el sistema marxiano. Las escuelas de pensamiento económico marxista se pueden clasificar según su abordaje matemático del proceso histórico de transformación de valores en precios de producción; sin embargo, aún dentro de las mismas escuelas existen divergencias teóricas importantes, fundamentalmente en relación a la MELT (Monetary Expression of Labor Time) o algún equivalente de esta. Así, las escuelas de pensamiento económico marxista son la escuela temporalista, la escuela simultaneísta y alguna combinación o punto intermedio entre ellas. Todas estas diferencias filosóficas, en contraste con lo que ocurre en Filosofía de la Estadística entre, por ejemplo, frecuentistas y bayesianos subjetivos, no solo no requieren de mucha investigación para ser verificadas empíricamente, sino que además tienen como consecuencia la gestación de sistemas matemáticos que hasta la fecha (la realidad es cambiante, indudablemente) han resultado antagónicos teóricamente respecto de ese punto (en el de transformar valores en precios de producción) y numéricamente diferentes de forma sustancial en sus predicciones (aunque cualitativamente es usual que sus diferencias no sean esenciales, salvo en el punto expuesto -que es evidentemente un aspecto medular de la teoría de Marx-).

La polémica sobre el uso de la ley del valor de Emmanuel tuvo que ver con el manejo de los supuestos que realizó y, con ello, con los escenarios teóricos que identificaba con la realidad. Esta polémica se agudizó luego de que, tras las críticas recibidas (cuyo trasfondo era teórico solo formalmente o minoritariamente en su defecto), Emmanuel publicara un sistema de ecuaciones simultáneas (con ello se ganó el rechazo de los marxistas más conservadores de la época -los cuales eran reacios al uso de las matemáticas-, que no eran minoría) para abordar la transformación de valores en precios de producción) poco ortodoxo para el oficialismo de lo que se podría denominar como “marxismo matemático”, lo que en términos netos le valió para la época (1962) incompatibilidad intelectual con la generalidad de los académicos.

El debate teórico real no es, evidentemente, si el tiempo existe o no, sino si es lo suficientemente relevante para configurar el sistema matemático alrededor del mismo o si no lo es y, por consiguiente, no existen consecuencias relevantes (tanto teóricas como numéricas) por descartarlo del modelo formal del sistema capitalista. Emmanuel define en su obra el valor como cantidad cronométrica de trabajo socialmente necesario (que es la misma definición del marxismo clásico, sólo que comprimida), sin embargo, su modelo de transformación de valores en precios de producción hace uso de las ecuaciones simultáneas (lo heterodoxo del asunto radica en que establece ex ante al trabajo como la variable fundamental del sistema, para que las ecuaciones y las incógnitas se igualen automáticamente y afirmar con ello que se implica la anterioridad histórica de la fuerza de trabajo, puesto que lo precede teóricamente), aunque tampoco por ello tenga problema en afirmar que existen “dos esencias” (el capital y el trabajo) o, en otros términos, que no sólo el trabajo crea valor. ¿Cuál fue entonces el trasfondo político?

A pesar de que en tiempos modernos pueda resultar un poco difícil de pensar, alrededor de 1962 existía un relativamente pujante movimiento obrero internacional y políticamente su unidad era cardinal en la lucha contra la explotación planeataria y el modelo de Emmanuel, guste o no, implica que el bienestar de los trabajadores de los países industrializados es sufragado indirectamente por las condiciones de miseria extrema que se viven en los países de la periferia. Por supuesto, ello se implica también a nivel local, ¿quiénes permiten que los trabajadores de las ramas productivas más intensivas en capital obtengan salarios muy por encima del promedio salarial nacional sino los trabajadores de las ramas productivas intensivas en trabajo?, en un sistema de economía política los agentes económicos guardan entre sí relaciones de suma cero, es decir, la ganancia de unos implica la pérdida de otros, aunque esto no siempre ocurre (y mucho menos se observa) de forma inmediata; este hecho fundamental no cambia en un sistema de economía geopolítica. Sin embargo, aunque la topología en ambos sistemas es fundamentalmente la misma las métricas cambian y las grandes brechas sociales observadas internacionalmente (por ejemplo, entre Noruega y Haití) no se observan en términos generales (promedio) a nivel local, lo que hace más notoria la explotación, aunque no más real. Complementariamente, debe resaltarse el hecho de que, dentro de sus propias condiciones materiales de existencia, los trabajadores de los países industrializados tienen sus propias luchas sociales.

Mi máximo cariño, aprecio y admiración a toda la comunidad marxista de aquella época, puesto que al fin y al cabo lucha de clases fáctica es nuestra misión última y todos somos producto de nuestras condiciones históricas, es decir, aunque hacemos la historia, no hacemos las condiciones bajo las cuales hacemos nuestra historia.

II. IIPPE 2021: imperialism, China and finance – michael roberts

La conferencia 2021 de la Iniciativa Internacional para la Promoción de la Economía Política (IIPPE) tuvo lugar hace un par de semanas, pero solo ahora he tenido tiempo de revisar los numerosos trabajos presentados sobre una variedad de temas relacionados con la economía política. El IIPPE se ha convertido en el canal principal para que economistas marxistas y heterodoxos ‘presenten sus teorías y estudios en presentaciones. Las conferencias de materialismo histórico (HM) también hacen esto, pero los eventos de HM cubren una gama mucho más amplia de temas para los marxistas. Las sesiones de Union for Radical Political Economy en la conferencia anual de la American Economics Association se concentran en las contribuciones marxistas y heterodoxas de la economía, pero IIPPE involucra a muchos más economistas radicales de todo el mundo.

Ese fue especialmente el caso de este año porque la conferencia fue virtual en zoom y no física (¿tal vez el próximo año?). Pero todavía había muchos documentos sobre una variedad de temas guiados por varios grupos de trabajo del IIPPE. Los temas incluyeron teoría monetaria, imperialismo, China, reproducción social, financiarización, trabajo, planificación bajo el socialismo, etc. Obviamente no es posible cubrir todas las sesiones o temas; así que en esta publicación solo me referiré a las que asistí o en las que participé.

El primer tema para mí fue la naturaleza del imperialismo moderno con sesiones que fueron organizadas por el grupo de trabajo de Economía Mundial. Presenté un artículo, titulado La economía del imperialismo moderno, escrito conjuntamente por Guglielmo Carchedi y yo. En la presentación argumentamos, con evidencia, que los países imperialistas pueden definirse económicamente como aquellos que sistemáticamente obtienen ganancias netas, intereses y rentas (plusvalía) del resto del mundo a través del comercio y la inversión. Estos países son pequeños en número y población (solo 13 o más califican según nuestra definición).

Demostramos en nuestra presentación que este bloque imperialista (IC en el gráfico a continuación) obtiene algo así como 1,5% del PIB cada año del ‘intercambio desigual’ en el comercio con los países dominados (DC en el gráfico) y otro 1,5% del PIB de intereses, repatriación de utilidades y rentas de sus inversiones de capital en el exterior. Como estas economías están creciendo actualmente a no más del 2-3% anual, esta transferencia es un apoyo considerable al capital en las economías imperialistas.

https://thenextrecession.files.wordpress.com/2021/09/ii1.png

Los países imperialistas son los mismos “sospechosos habituales” que Lenin identificó en su famosa obra hace unos 100 años. Ninguna de las llamadas grandes “economías emergentes” está obteniendo ganancias netas en el comercio o las inversiones – de hecho, son perdedores netos para el bloque imperialista – y eso incluye a China. De hecho, el bloque imperialista extrae más plusvalía de China que de muchas otras economías periféricas. La razón es que China es una gran nación comercial; y también tecnológicamente atrasado en comparación con el bloque imperialista. Entonces, dados los precios del mercado internacional, pierde parte de la plusvalía creada por sus trabajadores a través del comercio hacia las economías más avanzadas. Esta es la explicación marxista clásica del “intercambio desigual” (UE).

Pero en esta sesión, esta explicación de los logros imperialistas fue discutida. John Smith ha producido algunos relatos convincentes y devastadores de la explotación del Sur Global por parte del bloque imperialista. En su opinión, la explotación imperialista no se debe a un “intercambio desigual” en los mercados entre las economías tecnológicamente avanzadas (imperialismo) y las menos avanzadas (la periferia), sino a la “superexplotación”. Los salarios de los trabajadores del Sur Global han bajado incluso de los niveles básicos de reproducción y esto permite a las empresas imperialistas extraer enormes niveles de plusvalía a través de la “cadena de valor” del comercio y los márgenes intraempresariales a nivel mundial. Smith argumentó en esta sesión que tratar de medir las transferencias de plusvalía del comercio utilizando estadísticas oficiales como el PIB de cada país era una ‘economía vulgar’ que Marx habría rechazado porque el PIB es una medida distorsionada que deja fuera una parte importante de la explotación de la economía global. Sur.

Nuestra opinión es que, incluso si el PIB no captura toda la explotación del Sur Global, nuestra medida de intercambio desigual todavía muestra una enorme transferencia de valor de las economías periféricas dependientes al núcleo imperialista. Además, nuestros datos y medidas no niegan que gran parte de esta extracción de plusvalía proviene de una mayor explotación y salarios más bajos en el Sur Global. Pero decimos que esta es una reacción de los capitalistas del Sur a su incapacidad para competir con el Norte tecnológicamente superior. Y recuerde que son principalmente los capitalistas del Sur los que están haciendo la “súper explotación”, no los capitalistas del Norte. Estos últimos obtienen una parte a través del comercio de cualquier plusvalía extra de las mayores tasas de explotación en el Sur.

De hecho, mostramos en nuestro artículo, las contribuciones relativas a la transferencia de plusvalía de tecnología superior (mayor composición orgánica del capital) y de explotación (tasa de plusvalía) en nuestras medidas. La contribución de la tecnología superior sigue siendo la principal fuente de intercambio desigual, pero la participación de diferentes tasas de plusvalía se ha elevado a casi la mitad.

https://thenextrecession.files.wordpress.com/2021/09/ii2.png

Andy Higginbottom en su presentación también rechazó la teoría marxista clásica del imperialismo del intercambio desigual presentada en el artículo Carchedi-Roberts, pero por diferentes motivos. Consideró que la igualación de las tasas de ganancia a través de las transferencias de plusvalías individuales a precios de producción se realizó de manera inadecuada en nuestro método (que seguía a Marx). Por lo tanto, nuestro método podría no ser correcto o incluso útil para empezar.

En resumen, nuestra evidencia muestra que el imperialismo es una característica inherente del capitalismo moderno. El sistema internacional del capitalismo refleja su sistema nacional (un sistema de explotación): explotación de las economías menos desarrolladas por las más desarrolladas. Los países imperialistas del siglo XX no han cambiado. No hay nuevas economías imperialistas. China no es imperialista en nuestras medidas. La transferencia de plusvalía por parte de la UE en el comercio internacional se debe principalmente a la superioridad tecnológica de las empresas del núcleo imperialista pero también a una mayor tasa de explotación en el “sur global”. La transferencia de plusvalía del bloque dominado al núcleo imperialista está aumentando en términos de dólares y como porcentaje del PIB.

En nuestra presentación, revisamos otros métodos para medir el “intercambio desigual” en lugar de nuestro método de “precios de producción”, y hay bastantes. En la conferencia, hubo otra sesión en la que Andrea Ricci actualizó (ver sección III) su invaluable trabajo sobre la medición de la transferencia de plusvalía entre la periferia y el bloque imperialista utilizando tablas mundiales de insumo-producto para los sectores comerciales y medidas en dólares PPA. Roberto Veneziani y sus colegas también presentaron un modelo de equilibrio general convencional para desarrollar un “índice de explotación” que muestra la transferencia neta de valor en el comercio de los países. Ambos estudios apoyaron los resultados de nuestro método más “temporal”.

En el estudio de Ricci hay una transferencia neta anual del 4% de la plusvalía en el PIB per cápita a América del Norte; casi el 15% per cápita para Europa occidental y cerca del 6% para Japón y Asia oriental. Por otro lado, existe una pérdida neta de PIB anual per cápita para Rusia del 17%; China 10%, América Latina 5-10% y 23% para India.

https://thenextrecession.files.wordpress.com/2021/09/ii3.png

En el estudio de Veneziani et al, “todos los países de la OCDE están en el centro, con un índice de intensidad de explotación muy por debajo de 1 (es decir, menos explotado que explotador); mientras que casi todos los países africanos son explotados, incluidos los veinte más explotados “. El estudio coloca a China en la cúspide entre explotados y explotados.

https://thenextrecession.files.wordpress.com/2021/09/ii4.png

En todas estas medidas de explotación imperialista, China no encaja a la perfección, al menos económicamente. Y esa es la conclusión a la que también se llegó en otra sesión que lanzó un nuevo libro sobre imperialismo del economista marxista australiano Sam King. El convincente libro de Sam King propone que la tesis de Lenin era correcta en sus fundamentos, a saber, que el capitalismo se había convertido en lo que Lenin llamó “capital financiero monopolista” (si bien su libro no está disponible de forma gratuita, su tesis versa fundamentalmente sobre lo mismo). El mundo se ha polarizado en países ricos y pobres sin perspectivas de que ninguna de las principales sociedades pobres llegue a formar parte de la liga de los ricos. Cien años después, ningún país que fuera pobre en 1916 se ha unido al exclusivo club imperialista (salvo con la excepción de Corea y Taiwán, que se beneficiaron específicamente de las “bendiciones de la guerra fría del imperialismo estadounidense”).

La gran esperanza de la década de 1990, promovida por la economía del desarrollo dominante de que Brasil, Rusia, India, China y Sudáfrica (BRICS) pronto se unirían a la liga de los ricos en el siglo XXI, ha demostrado ser un espejismo. Estos países siguen siendo también rans y todavía están subordinados y explotados por el núcleo imperialista. No hay economías de rango medio, a medio camino, que puedan ser consideradas como “subimperialistas” como sostienen algunos economistas marxistas. King muestra que el imperialismo está vivo y no tan bien para los pueblos del mundo. Y la brecha entre las economías imperialistas y el resto no se está reduciendo, al contrario. Y eso incluye a China, que no se unirá al club imperialista.

Hablando de China, hubo varias sesiones sobre China organizadas por el grupo de trabajo IIPPE China. Las sesiones fueron grabadas y están disponibles para verlas en el canal de YouTube de IIPPE China. La sesión cubrió el sistema estatal de China; sus políticas de inversión extranjera; el papel y la forma de planificación en China y cómo China se enfrentó a la pandemia de COVID.

También hubo una sesión sobre ¿Es capitalista China?, en la que realicé una presentación titulada ¿Cuándo se volvió capitalista China? El título es un poco irónico, porque argumenté que desde la revolución de 1949 que expulsó a los terratenientes compradores y capitalistas (que huyeron a Formosa-Taiwán), China ya no ha sido capitalista. El modo de producción capitalista no domina en la economía china incluso después de las reformas de mercado de Deng en 1978. En mi opinión, China es una “economía de transición” como lo era la Unión Soviética, o lo son ahora Corea del Norte y Cuba.

En mi presentación defino qué es una economía de transición, como la vieron Marx y Engels. China no cumple con todos los criterios: en particular, no hay democracia obrera, no hay igualación o restricciones en los ingresos; y el gran sector capitalista no está disminuyendo constantemente. Pero, por otro lado, los capitalistas no controlan la maquinaria estatal, sino los funcionarios del Partido Comunista; la ley del valor (beneficio) y los mercados no dominan la inversión, sí lo hace el gran sector estatal; y ese sector (y el sector capitalista) tienen la obligación de cumplir con los objetivos de planificación nacional (a expensas de la rentabilidad, si es necesario).

Si China fuera simplemente otra economía capitalista, ¿cómo explicamos su fenomenal éxito en el crecimiento económico, sacando a 850 millones de chinos de la línea de pobreza ?; y evitar las recesiones económicas que las principales economías capitalistas han sufrido de forma regular? Si ha logrado esto con una población de 1.400 millones y, sin embargo, es capitalista, entonces sugiere que puede haber una nueva etapa en la expansión capitalista basada en alguna forma estatal de capitalismo que sea mucho más exitosa que los capitalismos anteriores y ciertamente más que sus pares en India, Brasil, Rusia, Indonesia o Sudáfrica. China sería entonces una refutación de la teoría marxista de la crisis y una justificación del capitalismo. Afortunadamente, podemos atribuir el éxito de China a su sector estatal dominante para la inversión y la planificación, no a la producción capitalista con fines de lucro y al mercado.

Para mí, China se encuentra en una “transición atrapada”. No es capitalista (todavía) pero no avanza hacia el socialismo, donde el modo de producción es a través de la propiedad colectiva de los medios de producción para las necesidades sociales con consumo directo sin mercados, intercambio o dinero. China está atrapada porque todavía está atrasada tecnológicamente y está rodeada de economías imperialistas cada vez más hostiles; pero también está atrapado porque no existen organizaciones democráticas de trabajadores y los burócratas del PC deciden todo, a menudo con resultados desastrosos.

Por supuesto, esta visión de China es minoritaria. Los “expertos en China” occidentales están al unísono de que China es capitalista y una forma desagradable de capitalismo para arrancar, no como los capitalismos “democráticos liberales” del G7. Además, la mayoría de los marxistas están de acuerdo en que China es capitalista e incluso imperialista. En la sesión, Walter Daum argumentó que, incluso si la evidencia económica sugiere que China no es imperialista, políticamente China es imperialista, con sus políticas agresivas hacia los estados vecinos, sus relaciones comerciales y crediticias explotadoras con países pobres y su supresión de minorías étnicas como los uyghars en la provincia de Xinjiang. Otros presentadores, como Dic Lo y Cheng Enfu de China, no estuvieron de acuerdo con Daum, y Cheng caracterizó a China como “socialista con elementos del capitalismo de Estado”, una formulación extraña que suena confusa.

Finalmente, debo mencionar algunas otras presentaciones. Primero, sobre la controvertida cuestión de la financiarización. Los partidarios de la ‘financiarización’ argumentan que el capitalismo ha cambiado en los últimos 50 años de una economía orientada a la producción a una dominada por el sector financiero y son las visiones de este sector inestable las que causan las crisis, no los problemas de rentabilidad en el sector productivo. sectores, como argumentó Marx. Esta teoría ha dominado el pensamiento de los economistas poskeynesianos y marxistas en las últimas décadas. Pero cada vez hay más pruebas de que la teoría no solo es incorrecta teóricamente, sino también empíricamente.

Y en IIPPE, Turan Subasat y Stavros Mavroudeas presentaron aún más evidencia empírica para cuestionar la “financiarización” en su artículo titulado: La hipótesis de la financiarización: una crítica teórica y empírica. Subasat y Mavroudeas encuentran que la afirmación de que la mayoría de las empresas multinacionales más grandes son “financieras” es incorrecta. De hecho, la participación de las finanzas en los EE. UU. Y el Reino Unido no ha aumentado en los últimos 50 años; y durante los últimos 30 años, la participación del sector financiero en el PIB disminuyó en un 51,2% y la participación del sector financiero en los servicios disminuyó en un 65,9% en los países estudiados. Y no hay evidencia de que la expansión del sector financiero sea un predictor significativo del declive de la industria manufacturera, que ha sido causado por otros factores (globalización y cambio técnico).

Y hubo algunos artículos que continuaron confirmando la teoría monetaria de Marx, a saber, que las tasas de interés no están determinadas por una “ tasa de interés natural ” de la oferta y la demanda de ahorros (como argumentan los austriacos) o por la preferencia de liquidez, es decir, el acaparamiento de dinero (como afirman los keynesianos), pero están limitados e impulsados ​​por los movimientos en la rentabilidad del capital y, por lo tanto, la demanda de fondos de inversión. Nikos Stravelakis ofreció un artículo, Una reconciliación de la teoría del interés de Marx y el rompecabezas de la prima de riesgo, que mostraba que las ganancias netas corporativas están relacionadas positivamente con los depósitos bancarios y las ganancias netas a brutas están relacionadas positivamente con la tasa de depósitos de préstamos y que el 60% de las variaciones en las tasas de interés pueden explicarse por cambios en la tasa de ganancia. Y Karl Beitel mostró la estrecha conexión entre el movimiento a largo plazo de la rentabilidad en las principales economías en los últimos 100 años (cayendo) y la tasa de interés de los bonos a largo plazo (cayendo). Esto sugiere que hay un nivel máximo de tasas de interés, como argumentó Marx, determinado por la tasa de ganancia sobre el capital productivo, porque el interés proviene solo de la plusvalía.

Finalmente, algo que no estaba en IIPPE pero que agrega aún más apoyo a la ley de Marx de la tendencia a la caída de la tasa de ganancia. En el libro World in Crisis, coeditado por Carchedi y yo, muchos economistas marxistas presentaron evidencia empírica de la caída de la tasa de ganancia del capital de muchos países diferentes. Ahora podemos agregar otro. En un nuevo artículo, El crecimiento económico y la tasa de ganancia en Colombia 1967-2019, Alberto Carlos Duque de Colombia muestra la misma historia que hemos encontrado en otros lugares. El artículo encuentra que el movimiento en la tasa de ganancia está “en concordancia con las predicciones de la teoría marxista y afecta positivamente la tasa de crecimiento. Y la tasa de crecimiento del PIB se ve afectada por la tasa de ganancia y la tasa de acumulación está en una relación inversa entre estas últimas variables ”.

Por lo tanto, los resultados “son consistentes con los modelos macroeconómicos marxistas revisados en este artículo y brindan apoyo empírico a los mismos. En esos modelos, la tasa de crecimiento es un proceso impulsado por el comportamiento de la tasa de acumulación y la tasa de ganancia. Nuestros análisis econométricos brindan apoyo empírico a la afirmación marxista sobre el papel fundamental de la tasa de ganancia, y sus elementos constitutivos, en la acumulación de capital y, en consecuencia, en el crecimiento económico”.

III. OTRAS REFERENCIAS BIBLIOGRÁFICAS

GENERALIDADES Y ORÍGENES HISTÓRICOS DE LA DISTRIBUCIÓN CHI-CUADRADO

ISADORE NABI